精英家教网 > 初中数学 > 题目详情
9、在△ABC中,AD是中线,O为AD的中点,直线a过点O,过A、B、C三点分别作直线a的垂线,垂足分别为G、E、F,当直线a绕点O旋转到与AD垂直时(如图1),易证:BE+CF=2AG,
当直线a绕点O旋转到与AD不垂直时,在图2、图3两种情况下,线段BE、CF、AG又有怎样的数量关系?请写出你的猜想,并对图3的猜想给予证明.
分析:(1)据图片可做猜测图2为BE+CF=2AG,图3为BE-CF=2AG;
(2)证明图3中BE-CF=2AG,可以连接CE,过D作DQ⊥l,垂足为Q,交CE于H,根据∠AGO=∠DQO=90°,∠AOG=∠DOQ(对顶角相等),且O为AD的中点即AO=DO,所以△AOG≌△DOQ,得到AG=DQ;又因为BE∥DH∥FC,AD是中线,可得BE=2DH,CF=2QH,所以BE-CF=2(DQ+QH)-2QH=2DQ=2AG.
解答:解:(1)猜想结果:图2结论为BE+CF=2AG,
图3结论为BE-CF=2AG.
(2)证明:连接CE,过D作DQ⊥l,垂足为Q,交CE于H(图4),
∵∠AGO=∠DQO=90°,∠AOG=∠DOQ(对顶角相等),且O为AD的中点即AO=DO,
∴△AOG≌△DOQ(AAS),即AG=DQ,
∵BE∥DH∥FC,BD=DC,
∴BE=2DH,CF=2QH,
∴BE-CF=2(DQ+QH)-2QH=2DQ=2AG.
点评:本题主要考查全等三角形的判定,涉及到中位线的性质、平行线的性质,垂线的性质等知识点,正解画出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是BC边上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的长.(结果保留根号)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•温州二模)如图,在△ABC中,AD是它的角平分线,∠C=90°,E在AB边上,以AE为直径的⊙O交BC于点D,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,AD的弦心距为1,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是∠BAC的平分线,DE、DF分别是△ABD和△ACD的高线,求证:AD⊥EF.

查看答案和解析>>

同步练习册答案