精英家教网 > 初中数学 > 题目详情

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点AC的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点BC不重合),过点D作直线=-交折线OAB于点E

1.(1)在点D运动的过程中,若△ODE的面积为S,求S的函数关系式,并写出自变量的取值范围;

2.(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′C′B′分别交CBOA于点DMO′A′分别交CBOA于点N,E.探究四边形DMEN各边之间的数量关系,并对你的结论加以证明;

    3.(3)问题(2)中的四边形DMEN中,ME的长为____________.

 

 

1.解:(1)∵矩形OABC中,点AC的坐标分别为

            ∴点B的坐标为

若直线经过点C,则

           若直线经过点A,则

           若直线经过点B,则

①当点E在线段OA上时,即时,(如图6) 

           ∵点E在直线上,

时,

           ∴点E的坐标为

           ∴. 

②当点E在线段BA上时,即时,(如图7) 

           ∵点DE在直线上,

时,

时,

           ∴点D的坐标为,点E的坐标为

           ∴

               .            综上可得:

 

2.(2)DM=ME=EN=ND

证明:如图8.

∵四边形OABC和四边形O′A′B′C′是矩形,

CBOA C′B′O′A′

DNMEDMNE

                 ∴四边形DMEN是平行四边形,且∠NDE=∠DEM

             ∵矩形OABC关于直线DE对称的图形为矩形O′A′B′C′

             ∴∠DEM=∠DEN

             ∴∠NDE=∠DEN

             ∴ND=NE

             ∴四边形DMEN是菱形.

             ∴DM=ME=EN=ND. 

 

3.(3)答:问题(2)中的四边形DMEN中,ME的长为  2.

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2数学公式相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案