精英家教网 > 初中数学 > 题目详情
14.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D 
(1)求证:四边形CDEF是平行四边形;
(2)若BC=3,tan∠DEF=2,求BG的值.

分析 (1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;
(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.

解答 解:(1)连接CE,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠B=45°,
∴∠COE=2∠B=90°,
∵EF是⊙O的切线,
∴∠FEO=90°,
∴EF∥OC,
∵DE∥CF,
∴四边形CDEF是平行四边形;

(2)过G作GN⊥BC于N,
∴△GMB是等腰直角三角形,
∴MB=GM,
∵四边形CDEF是平行四边形,
∴∠FCD=∠FED,
∵∠ACD+∠GCB=∠GCB+∠CGM=90°,
∴∠CGM=∠ACD,
∴∠CGM=∠DEF,
∵tan∠DEF=2,
∴tan∠CGM=$\frac{CM}{GM}$=2,
∴CM=2GM,
∴CM+BM=2GM+GM=3,
∴GM=1,
∴BG=$\sqrt{2}$GM=$\sqrt{2}$.

点评 本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.洛阳某中学“研究学习小组”的同学们进行了社会实践活动,其中一个小组的同学调查了30户家庭某月的用水量,如表所示:
用水量(吨)1520253041
户数36795
则这30户家庭用水量的众数和中位数分别是(  )
A.25,27B.25,25C.30,27D.30,25

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列图形中,是中心对称图形,但不是轴对称图形的是(  )
A.平行四边形B.线段C.等边三角形D.抛物线

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.

(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当$\widehat{DC}$=$\widehat{AC}$时,延长AB至点E,使BE=$\frac{1}{2}$AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知二次函数y=$\frac{4}{9}$x2-4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为$\sqrt{5}$,P为⊙C上一动点.
(1)点B,C的坐标分别为B(3,0),C(0,-4);
(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=$\frac{5+\sqrt{5}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.-5的倒数是(  )
A.$\frac{1}{5}$B.±5C.5D.-$\frac{1}{5}$

查看答案和解析>>

科目:初中数学 来源:2017届江苏省启东市九年级寒假作业测试(开学考试)数学试卷(解析版) 题型:填空题

如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.

查看答案和解析>>

同步练习册答案