精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=(a+2)x2+4ax+a2-1经过坐标原点,交x轴的正半轴于点D.
(1)求a的值;
(2)设抛物线的顶点为M,利用尺规,在抛物线的对称轴上,作点N,使得△OMN为等腰三角形.若不止一个,则分别记作N1、N2、N3、…;
(3)若点P为抛物线对称轴右侧部分上的一点,过点P作PA⊥x轴于点A,PB∥x轴交抛物线左侧部分于点B,过点B作BC⊥x轴于点C,问:是否存在这样的点P,使得矩形PACB恰好为正方形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】分析:(1)抛物线y=(a+2)x2+4ax+a2-1经过坐标原点,把坐标(0,0)代入抛物线解析式,求出a的值即可;
(2)在抛物线的对称轴上作出所有使得△OMN为等腰三角形的N点即可;
(3)假如存在,设点P(x,y),分别讨论点P在第一象限和第四象限时,矩形PACB恰好为正方形得PA=PB,得到关于x的一元二次方程,解出x的值即可.
解答:解:(1)∵抛物线y=(a+2)x2+4ax+a2-1经过坐标原点,
∴把(0,0)代入y=(a+2)x2+4ax+a2-1,
解得a=±1,
∵抛物线的对称轴x大于0,经检验,a=1不合题意,舍去;a=-1符合题意,
∴a=-1;

(2)∵y=x2-4x=(x-2)2-4
∴M(2,-4),
∴OM=2
符合题意的点N共有4个,N1等腰三角形N1OM的顶点,(2,-1.5),
N2是等腰三角形N2OM底边上的点,(2,4);
N3是等腰三角形OMN3底边上的点,(2,-4-2);
N4是等腰三角形OMN4底边上的点,(2,2-4).
如图:


(3)设P(x,y).
①当点P在第一象限,如图1,
由题意矩形PACB恰好为正方形,则PB=PA,
PA=x2-4x,PB=2(x-2),得 x2-4x=2(x-2),
解得x=3+,x=3-(舍去).
∴P(3+,2+2);                                      
②当点P在第四象限,如图2:
由题意矩形PACB恰好为正方形,则PB=PA,
得4x-x2=2(x-2),
解得x=1+,x=1- (舍去),
∴P(1+,2-2),
∴存在P1(3+,2+2)、P2(1+,2-2),使得矩形PACB恰好为正方形.

点评:本题主要考查了二次函数、正方形性质等知识点,解答本题的关键是掌握二次函数的性质,会求二次函数的对称轴、熟练掌握正方形的性质,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案