如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为9,则GE+FH的最大值为 .
科目:初中数学 来源: 题型:
如图,双曲线(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是( ).
A. B. C.2 D.
|
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点。若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”。以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于轴的抛物线条数是( )
A. 16 B. 15 C. 14 D. 13
查看答案和解析>>
科目:初中数学 来源: 题型:
某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4000 | 2500 |
售价(元/部) | 4300 | 3000 |
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正方形ABCD的边长为3,将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°),得到正方形AEFG,FE交线段DC于点Q,FE的延长线交线段BC于点P,连结AP、AQ.
(1)求证:△ADQ≌△AEQ;
(2)求证:PQ=DQ+PB;
(3)当∠1=∠2时,求PQ的长.(杭十五中模拟)
查看答案和解析>>
科目:初中数学 来源: 题型:
以下哪些选项可判断二次函数与x轴有两个交点:__________(只需填上正确的序号)
①a+b+c=0;②b>a+c;③b= 2a+3c;④ac<0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com