精英家教网 > 初中数学 > 题目详情
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距8
3
km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
(1)∵∠1=30°,∠2=60°,
∴△ABC为直角三角形.
∵AB=40km,AC=8
3
km,
∴BC=
AB2+AC2
=
402+(8
3
)
2
=16
7
(km).
∵1小时20分钟=80分钟,1小时=60分钟,
16
7
80
×60=12
7
(千米/小时).

(2)能.
理由:作线段BR⊥x轴于R,作线段CS⊥x轴于S,延长BC交l于T.
∵∠2=60°,
∴∠4=90°-60°=30°.
∵AC=8
3
(km),
∴CS=8
3
sin30°=4
3
(km).
∴AS=8
3
cos30°=8
3
×
3
2
=12(km).
又∵∠1=30°,
∴∠3=90°-30°=60°.
∵AB=40km,
∴BR=40•sin60°=20
3
(km).
∴AR=40×cos60°=40×
1
2
=20(km).
易得,△STC△RTB,
所以
ST
RT
=
CS
BR

ST
ST+20+12
=
4
3
20
3

解得:ST=8(km).
所以AT=12+8=20(km).
又因为AM=19.5km,MN长为1km,∴AN=20.5km,
∵19.5<AT<20.5
故轮船能够正好行至码头MN靠岸.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一艘轮船在40海里/时的速度由西向东航行,上午8时到达A处,测得灯塔P在北偏东60°方向上;10时到达B处,测得灯塔P在北偏东30°方向上.当轮船到达灯塔P的正南时,轮船距灯塔P多远?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:一个等腰直角三角形腰长为a,三边上的高之积为P,一个等边三角形边长为a,三边上的高之积为Q,则P和Q的大小关系是(  )
A.P>QB.P<QC.P=QD.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,B,C是河岸边两点,A是对岸边上一点,测得∠ABC=45°,∠ACB=60°,BC=60米,甲想从A点出发在最短的时间内到达BC边,若他的速度为5米/分,则他所用的最短时间为______分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为______千米.(参考数据:
3
≈1.732,结果保留两位有效数字)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

同学们在学完解直角三角形的应用后,某合作学习小组用测倾器、皮尺测量了学校旗杆的高度,他们设计了如下方案(如图所示):
①在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=30°;
②量出测点A到旗杆底部N的水平距离AN=20m;
③量出测倾器的高度AC=1m.
(1)根据上述测量数据,即可求出旗杆的高度MN=______.(结果可以保留根号)
(2)如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图)的方案.要求:
(ⅰ)在图中,画出你测量小山高度MN的示意图(标上适当字母);
(ⅱ)写出你设计的方案.(测倾器的高度用h表示,其它涉及的长度用字母a、b、c…表示,涉及到的角度用α、β…表示,最后请给出计算MN的高度的式子).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在小山的东侧A庄有一热气球,由于受西风的影响,以每分钟35m的速度沿着与水平方向成75°的方向飞行,40min时到达C处,此时气球上的人发现气球与山顶P点及小山西侧的B庄在一条直线上,同时测得B庄的俯角为30°,又在A庄测得山顶P的仰角为45°.则A庄与B庄的距离为______,山高是______.(保留准确值)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在锐角△ABC中,AB=AC,BC=10,sinA=
3
5

(1)求tanB的值;
(2)求AB的长.

查看答案和解析>>

同步练习册答案