如图所示,点是⊙上一点,⊙与⊙相交于、两点,,垂足为,分别交⊙、⊙于、两点,延长交⊙于,交的延长线于,交于,连结.
1.求证:;
2.若,求证:;
3. 若,且线段、的长是关于的方程的两个实数根,求、的长.
1.∵BC⊥AD于D,
∴∠BDA=∠CDA=90°,
∴AB、AC分别为⊙O1、⊙O2的直径.
∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°,
∴∠BGD=∠C.
2.∵∠DO2C=45°,∴∠ABD=45°
∵O2D=O2C,
∴∠C=∠O2DC=(180°-∠DO2C)=67.5°,
∴∠4=22.5°,·
∵∠O2DC=∠ABD+∠F,
∴∠F=∠4=22.5°,∴AD=AF.
3.∵BF=6CD,∴设CD=k,则BF=6k.
连结AE,则AE⊥AD,∴AE∥BC,
∴ ∴AE·BF=BD·AF.
又∵在△AO2E和△DO2C中,AO2=DO2
∠AO2E=∠DO2C, O2E=O2C,
∴△AO2E≌△DO2C,∴AE=CD=k,
∴6k2=BD·AF=(BC-CD)(BF-AB).
∵∠BO2A=90°,O2A=O2C,∴BC=AB.
∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,
解得:BC=3k或BC=4k.
当BC=3k,BD=2k.
∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根.
∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2.
整理,得:4m2-12m+29=0.
∵△=(-12)2-4×4×29=-320<0,此方程无实数根.
∴BC=3k(舍).
当BC=4k时,BD=3k.
∴3k+6k=4m+2,18k2=4m2+8,整理,
得:m2-8m+16=0,
解得:m1=m2=4,
∴原方程可化为x2-18x+72=0,
解得:x1=6,x2=12, ∴BD=6,BF=12.
解析:略
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2008年江苏省扬州市高邮中学教改班招生考试数学试卷(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2007年浙江省温州市乐清中学自主招生考试数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com