精英家教网 > 初中数学 > 题目详情
如图,P为正方形ABCD内的一点,画?PAHD,?PBEA,?PCFB,?PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.
分析:要证明以E,F,G,H为顶点的四边形是正方形,需要作辅助线连接四个顶点,判断4条线段与已知图形之间的关系,利用平行四边形的对角线互相平分的性质得到中点四边形是正方形,利用三角形的中位线定理很容易证明需要的结论.
解答:证明:如图,连接PH、PG、PF、PE,交点分别为:M、N、L、K,再连接HG、GF、FE、EH、PH.
根据平行四边形的性质,M平分AD和PH,N平分CD和PG,
因此MN是△PHG的中位线,
所以HG∥MN,HG=2MN.

∵顺次连接正方形ABCD各边中点得MNLK是正方形,
∴MN=NL=LK=KM,4个角都为90°.
同理可证:GF∥NL,GF=2NL;
FE∥LK,FE=2LK;
EH∥KM,EH=2KM.
∴HG=GF=EF=EH,四边形EFGH的4个角也为90°,
所以E,F,G,H是正方形的四个顶点.
点评:本题考查了正方形的判定与性质、平行四边形的性质以及三角形中位线定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,E为正方形ABCD的边AB上一点(不含A、B点),F为BC边的延长线上一点,△DAE旋转后能与△DCF重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果连接EF,那么△DEF是怎样的三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿精英家教网OM方向以
2
个单位每秒速度运动,运动时间为t.求:
(1)C的坐标为
 

(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,G为正方形ABCD的对称中心,A(0,2),B(1,0),直线OG交AB于E,DC于F,点Q从A出发沿A→B→C的方向以
5
个单位每秒速度运动,同时,点P从O出发沿OF方精英家教网向以
2
个单位每秒速度运动,Q点到达终点,点P停止运动,运动时间为t.求:
(1)求G点的坐标.
(2)当t为何值时,△AEO与△DFP相似?
(3)求△QCP面积S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,正方形ABCD的边长为
10
,tan∠ABO=3,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以
2
个单位每秒速度运动,运动时间为t,求:
(1)直接写出A、D、P的坐标;
(2)求△HCR面积S与t的函数关系式;
(3)当t为何值时,△ANO与△DMR相似?
(4)求以A、B、C、R为顶点的四边形是梯形时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•梅州一模)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为
2
,求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案