精英家教网 > 初中数学 > 题目详情

已知M、N分别在正方形ABCD的边DA、AB上,且AM=AN,过A作BM的垂线,垂足为P,求证:∠APN=∠BNC.

证明:延长AP交DC于E,连接NE,
∵AP⊥BM,
∴∠APB=∠BPE=∠APM=90°,
∵正方形ABCD,
∴AB∥CD,AB=CD,∠ABC=∠DCB=90°,
∴∠BPE+∠BCD=180°,
∴P、B、C、E四点共圆,
而∠PAM+∠AMP=90°,∠AMP+∠ABM=90°,
∴∠ABM=∠PAM=∠EAD,
∴△ABM≌△DAE,
∴DE=AM=AN,
∴CE=BN,
∴四边形NBCE是矩形,
∴N、B、C、E四点共圆,
即N、B、C、E、P五点共圆,
∴∠NPB=∠NCB,
∵∠APN+∠BPN=90°,∠BCN+∠BNC=90°,
∴∠APN=∠BNC.
分析:延长AP交DC于E,连接NE,由∠BPE+∠BCD=180°,证出P、B、C、E四点共圆,由△ABM和△DAE全等,推出CE=BN,得出矩形BNEC,证出N、B、C、E四点共圆,即N、B、C、E、P五点共圆,即可得出答案.
点评:本题主要考查了矩形的性质和判定,正方形的性质和判定,全等三角形的性质和判定,确定圆的条件等知识点,解此题的关键是证明∠NPB和∠NCB相等.题目较好但有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4 (速度单位:1个单位长度/秒).
(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒种,原点恰好处在两个动点的正中间?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知直线l的解析式为y=-
34
x+6
,并且与x轴、y精英家教网轴分别交于点A、B.
(1)求A、B两点的坐标.
(2)一个半径为1的动圆⊙P (起始时圆心P在原点O处),以4个单位/秒的速度沿x轴正方向运动,问经过多长时间与直线l相切.
(3)若在圆开始运动的同时,一动点Q从B出发,沿BA方向以5个单位/秒的速度运动,在整个运动过程中,问经过多长时间直线PQ经过△AOB的重心M?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=
ED+OPED•OP
,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•槐荫区三模)如图,已知直线l的解析式为y=-x+6,直线l与x轴、y轴分别相交于A、B两点,平行于直线l的直线n从原点出发,沿x轴正方向以每秒1个单位长度的速度运动,设运动时间为t秒,运动过程中始终保持n∥l,当直线n与直线l重合时,运动结束.直线n与x轴,y轴分别相交于C、D两点,以线段CD的中点P为圆心、CD为直径,在CD上方作半圆,半圆面积为S.
(1)求A、B两点的坐标;
(2)当t为何值时,半圆与直线l相切?
(3)直线n在运动过程中,
①求S与t的函数关系式;
②是否存在这样的t值,使得半圆面积S=
π4
S梯形ABCD?若存在,求出t值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂州)在平面直角坐标系中,已知M1(3,2),N1(5,-1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).
(1)若M(-2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线y=
1
6
x2+
2
3
3
x+k
上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:
3
,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的
1
4
,求此时BP的长度.

查看答案和解析>>

同步练习册答案