【题目】如图,为等边三角形,为上的一个动点,为延长线上一点,且.
(1)当是的中点时,求证:.
(2)如图1,若点在边上,猜想线段与之间的关系,并说明理由.
(3)如图2,若点在的延长线上,(1)中的结论是否仍然成立,请说明理由.
【答案】(1)证明见解析;(2),理由见解析;(3)成立,理由见解析.
【解析】
(1)根据等边三角形的性质可得,,然后根据等边对等角可得,从而求出,然后利用等角对等边即可证出,从而证出结论;
(2)过点作,交于点,根据等边三角形的判定也是等边三角形,然后利用AAS即可证出,根据全等三角形的性质可得,从而证出结论;
(3)过点作,交的延长线于点,根据等边三角形的判定也是等边三角形,然后利用AAS即可证出,根据全等三角形的性质可得,从而证出结论;
(1)证明:∵为等边三角形,是的中点,
∴,.
∵,
∴.
∵,
∴,
∴,
∴.
(2).
理由:如图,过点作,交于点.
∵是等边三角形,
∴也是等边三角形,
∴,.
∵,
∴.
∵,
∴,
∴.
又∵,,
∴.
在和中,
∴,
∴,
∴.
(3)如图,过点作,交的延长线于点.
∵是等边三角形,
∴也是等边三角形,
∴,.
∵,
∴.
∵,
∴,
∴,
在和中,
∴,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)求证:△AFD∽△CFE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H.下列说法: ;②点F是GB的中点; ; ,其中正确的结论的序号是_____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC 中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.
(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;
(2)若△AEF的周长为8 cm,且BC=4 cm,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ 与y轴相交于点A,点B与点O关于点A对称.
(1)填空:点B的坐标为________;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA交AC于点D,DE⊥AB于点E,且△DEA的周长为2019cm,则AB=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工程对承接了60万平方米的绿化工程,由于情况有变,……,设原计划每天绿化的面积为万平方米,列方程为,根据方程可知省略的部分是( )
A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务
B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务
C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务
D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com