精英家教网 > 初中数学 > 题目详情

【题目】15 ABC中,AB=AC=12厘米,∠B=C,BC=8厘米,点DAB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当BPDCQP全等时,v的值为

A. 2 B. 3 C. 23 D. 15

【答案】C

【解析】设经过t秒后,△BPD与△CQP全等,

∵AB=AC=12厘米,点DAB的中点,

∴BD=6厘米,

∵∠B=∠C,BP=CQ=2t,

∴要使△BPD和△CQP全等,只有BD=CP=6厘米,

86=2t,

解得:t=1,

v=2÷1=2厘米/秒,

BP=PC时,

∵BC=8cm,

∴PB=4cm,

t=4÷2=2s,

QC=BD=6cm,

v=6÷2=3厘米/秒。

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(8分)为加强与家长的沟通,某校在家长会到来之前需印刷《致家长的一封信》等材料以作宣传,该校的印刷任务原来由甲复印店承接,其收费y(元)与印刷页数x(页)的函数关系如图所示.

(1)从图象中可看出:印刷超过500页部分每页收费 元;

(2)现在乙印刷厂表示:每页0.15元收费.另收200元的制版费,乙印刷厂收费y(元)与印刷页数x(页)的函数关系为

(3)在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答印刷页数在3000页左右应选择哪个印刷店?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个相似三角形的周长比为4:3,则它们的相似比为( ).

A.4:3B.3:4C.16:9D.9:16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N

(1)求N的函数表达式;

(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;

(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:2(a+1)﹣a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016甘肃省兰州市)对于一个矩形ABCD及⊙M给出如下定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016江西省)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”

【探究证明】

(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;

(2)如图2,求证:∠OAB=∠OAE′

【归纳猜想】

(3)图1、图2中的“叠弦角”的度数分别为

(4)图n中,“叠弦三角形” 等边三角形(填“是”或“不是”)

(5)图n中,“叠弦角”的度数为 (用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段a=4,c=9,那么a和c的比例中项b=

查看答案和解析>>

同步练习册答案