精英家教网 > 初中数学 > 题目详情
10.在整式乘法的学习中,我们采用了构造几何图形的方法研究代数式的变形问题,借助直观、形象的几何图形,加深对整式乘法的认识和理解,感悟代数与几何的内在联系.
现有边长分别为a,b的正方形Ⅰ号和Ⅱ号,以及长为a,宽为b的长方形Ⅲ号卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)

根据已有的学习经验,解决下列问题:

(1)图1是由1张Ⅰ号卡片、1张Ⅱ号卡片、2张Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是(a+b)2=a2+2ab+b2
(2)小聪想用几何图形表示等式2a2+3ab+b2=(a+b)(2a+b),图2给出了他所拼接的几何图形的一部分,请你补全图形;
(3)小聪选取2张Ⅰ号卡片、2张Ⅱ号卡片、5张Ⅲ号卡片拼接成一个长方形,请你画出拼接的几何图形的长方形,并直接写出几何图形表示的等式.

分析 (1)根据图形,有直接求和间接求两种方法,列出等式即可;
(2)根据已知等式画出相应的图形,如图所示;
(4)根据题意列出关系式,分解因式后即可得到结果.

解答 解:(1)这个几何图形表示的等式是(a+b)2=a2+2ab+b2
(2)如图:

(3)拼接的几何图形表示的等式是(a+2b)(2a+b)=2a2+5ab+2b2
故答案为:(a+b)2=a2+2ab+b2

点评 此题考查了因式分解的应用,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,直线y=x+3与x轴交于点B,与直线CD交于点A(-$\frac{12}{11}$,a),点D的坐标为(0,$\frac{3}{2}$),点C在x轴上
(1)求a的值;
(2)求直线CD的解析式;
(3)若点E是直线CD上一动点(不与点C重合),当△CBE∽△COD时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各式中与-2xy-x2-y2的相等的是(  )
A.(x+y)2B.-(x+y)2C.(x-y)2D.-(x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形(a×b的矩形指边长分别为a,b的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当n=5时,可将正方形分割为五个1×5的矩形.
如图②,当n=6时,可将正方形分割为六个2×3的矩形.
如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形
如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形
如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形

探究二:
当n=10,11,12,13,14时,分别将正方形按下列方式分割:

所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n-5 )×( n-5 )的正方形和两个5×(n-5)的矩形.显然,5×5的正方形和5×(n-5)的矩形均可分割为1×5的矩形,而(n-5)×(n-5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
探究三:
当n=15,16,17,18,19时,分别将正方形按下列方式分割:

请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n-10 )×(n-10)的正方形和两个10×(n-10)的矩形.显然,10×10的正方形和10×(n-10)的矩形均可分割为1x5的矩形,而(n-10)×(n-10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.用适当的方法解方程组:
(1)$\left\{\begin{array}{l}{x+y=3}\\{2x+3y=8}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{4x-3y=1}\\{3x+2y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(一)阅读
求x2+6x+11的最小值.
解:x2+6x+11
=x2+6x+9+2
=(x+3)2+2
由于(x+3)2的值必定为非负数,所以(x+3)2+2,即x2+6x+11的最小值为2.
(二)解决问题
(1)若m2+2mn+2n2-6n+9=0,求($\frac{m}{n}$)-3的值;
(2)对于多项式x2+y2-2x+2y+5,当x,y取何值时有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.盒子里装有若干个红球、绿球和5个黄球,它们除颜色外完全相同,从盒子中任意摸出一个球,摸到黄球的概率是$\frac{1}{10}$.
(1)三种颜色的球共有多少个?
(2)若摸到红球的概率与摸到绿球的概率之比是4:5,红球和绿球的个数分别有多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.关于x的方程:x+$\frac{1}{x}$=c+$\frac{1}{c}$的解是x1=c,x2=$\frac{1}{c}$;x-$\frac{1}{x}$=c-$\frac{1}{c}$的解是x1=c,x2=-$\frac{1}{c}$,则x+$\frac{1}{x-3}$=c+$\frac{1}{c-3}$的解是x1=c,x2=3+$\frac{1}{c-3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.一个圆柱的高为8cm,则圆柱体的体积Vcm3与底面直径Rcm的关系式为V=2πR2,当R为5cm时,V=50πcm3

查看答案和解析>>

同步练习册答案