精英家教网 > 初中数学 > 题目详情

【题目】已知ADBC,BE=CE,ABC=2C,BF为B的平分线.求证:AB=2DE.

【答案】证明见解析.

【解析】

试题连接EF.根据角平分线的性质知AF:FC=DE:EC,由平行线分线段成比例知AF:FC=DE:EC,由这两个比例式和已知条件BE=CE,即AB=2DE.

试题解析: 连接EF.

∵∠ABC=2C,BF为B的平分线,

∴∠FBC=C=ABC,

BF=CF;

BE=CE,

EFBC;

ADBC,

EFAD,

AF:FC=DE:EC;

而AB:BC=AF:FC,

AB:BC=DE:EC,

即AB=2DE.

考点: 1.平行线分线段成比例;2.角平分线的性质;3.等腰三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:

(1)求y与x之间的函数关系式;

(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB4cm,点EF同时从C点出发,以1cm/s的速度分别沿CBBACDDA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)t(s)的函数关系可用图象表示为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点PA点开始沿AB边向点B1厘米/秒的速度移动(到达点B即停止运动),点QB点开始沿BC边向点C2厘米/秒的速度移动(到达点C即停止运动).

(1)如果P,Q分别从A,B两点同时出发,经过几秒钟,△PBQ的面积等于△ABC面积的三分之一?

(2)如果P,Q两点分别从A,B两点同时出发,几秒钟后,P,Q相距6厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC90°ABBC,点D是线段AB上的一点,连接CD,过点BBGCD,分别交CDCA于点EF,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①②若点DAB的中点,则AF=AB③当BCFD四点在同一个圆上时,DFDB;④若,,其中正确的结论序号是( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.

解:原方程可变形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.我们称晓东这种解法为平均数法”.

(1)下面是晓东用平均数法解方程(x+2)(x+6)=5时写的解题过程.

解:原方程可变形,得

[(x+□)﹣〇][(x+□)+〇]=5.

(x+□)2﹣〇2=5,

(x+□)2=5+〇2

直接开平方并整理,得x1=,x2=¤.

上述过程中的“□”,“〇”,“”,“¤”表示的数分别为            

(2)请用平均数法解方程:(x﹣3)(x+1)=5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DBC边上,△ABD绕点A旋转后与△ACE重合,如果∠ECB=100°,那么旋转角的大小是_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别在ACBC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,AB两地间的距离。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、D、E在一条直线上,BE与AC相交于点F,且

⑴求证:△ABC∽△ADE;

⑵求证:∠BAD=∠CAE;

⑶若∠BAD=18°,求∠EBC的度数.

查看答案和解析>>

同步练习册答案