分析 (1)根据三角形的中位线性质求出DG∥BC,EF∥BC,DG=$\frac{1}{2}$BC,EF=$\frac{1}{2}$BC,求出DG∥EF,DG=EF,根据平行四边形的判定得出即可;
(2)求出∠BOC=90°,根据直角三角形的斜边上中线性质得出EF=2OM,即可求出答案.
解答 (1)证明:∵边AB、OB、OC、AC的中点分别为D、E、F、G,
∴DG∥BC,EF∥BC,DG=$\frac{1}{2}$BC,EF=$\frac{1}{2}$BC,
∴DG∥EF,DG=EF,
∴四边形DEFG是平行四边形;
(2)解:∵∠OBC和∠OCB互余,
∴∠OBC+∠OCB=90•,
∴∠BOC=90°,
∵M为EF的中点,
∴OM=$\frac{1}{2}$EF,
∵OM=5,DG=EF,
∴DG=EF=2OM=10.
点评 本题考查了三角形的中位线性质,平行四边形的性质,互余,直角三角形斜边上中线性质等知识点,能熟练地运用定理进行推理是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com