精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12cm,动点P从点B开始沿边BA以2cm/s的速度向点A移动,过点P作PE⊥BC,PF⊥AC,设点P移动的时间为t,四边形PECF的面积为S.
(1)写出S与t的函数解析式及t的取值范围;
(2)求出当t为何值时,四边形PECF的面积最大?最大是多少?

分析 (1)解Rt△ABC,求得BC=AB×cos30°=6$\sqrt{3}$cm,根据路程=速度×时间以及已知条件得出PB=2tcm,0≤t≤6,再解Rt△PBE,得到PE=$\frac{1}{2}$PB=tcm,BE=$\sqrt{3}$PE=$\sqrt{3}$tcm,那么EC=BC-BE=(6$\sqrt{3}$-$\sqrt{3}$t)cm,代入四边形FCEP的面积S=PE×EC即可;
(2)将(1)中所求解析式利用配方法变形为顶点式,再根据二次函数的性质即可求解.

解答 解:(1)∵在Rt△ABC中,∠C=90°,∠B=30°,AB=12cm,
∴BC=AB×cos30°=6$\sqrt{3}$cm,
∵动点P从点B开始沿边BA以2cm/s的速度向点A移动,点P移动的时间为t,
∴PB=2tcm,0≤t≤6,
∵在Rt△PBE中,∠PEB=90°,∠B=30°,PB=2tcm,
∴PE=$\frac{1}{2}$PB=tcm,BE=$\sqrt{3}$PE=$\sqrt{3}$tcm,
∴EC=BC-BE=(6$\sqrt{3}$-$\sqrt{3}$t)cm,
∴四边形FCEP的面积S=PE×EC=t(6$\sqrt{3}$-$\sqrt{3}$t)=-$\sqrt{3}$t2+6$\sqrt{3}$t,
∴S=-$\sqrt{3}$t2+6$\sqrt{3}$t(0≤t≤6);

(2)∵S=-$\sqrt{3}$t2+6$\sqrt{3}$t=-$\sqrt{3}$(t-3)2+9$\sqrt{3}$,
∴当t=3s时,四边形PECF的面积最大,最大值为9$\sqrt{3}$cm2

点评 本题考查了二次函数的应用,解直角三角形,矩形的面积,二次函数的最值,根据四边形FCEP的面积S=PE×EC,求出y与t之间的函数关系式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.分别从正面、左面和上面这三个方向看下面的四个几何体中的一个,得到如图所示的平面图形,那么这个几何体是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下列材料:
如图1,在Rt△ABC中,∠C=90°,D为边AC上一点,DA=DB,E为BD延长线上一点,∠AEB=120°,猜想AC、BE、AE的数量关系,并证明.
小明的思路是:根据等腰△ADB的轴对称性,将整个图形沿着AB边的垂直平分线翻折,得到点C的对称点F,如图2,过点A作AF⊥BE,交BE的延长线于F,请补充完成此问题;
参考小明思考问题的方法,解答下列问题:
如图3,等腰△ABC中,AB=AC,D、F在直线BC上,DE=BF,连接AD,过点E作EG∥AC交FH的延长线于点G,∠DFG+∠D=∠BAC.
(1)探究∠BAD与∠CHG的数量关系;
(2)请在图中找出一条和线段AD相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若对于任何实数a,b,c,d,定义$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,按照定义,若$|\begin{array}{l}{x+1}&{x}\\{x-1}&{2x-3}\end{array}|$=0,则x的值为(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.3D.±$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,直线y=-$\frac{\sqrt{3}}{3}$x+b(b>0),分别交x轴、y轴于A、B两点,点C(3,0),D(6,0),以CD为一边在x轴上方作矩形CDEF,CF=$\sqrt{3}$,设矩形CDEF与△ABO重叠部分的面积为S.
(1)当S等于矩形CDEF面积的一半时,求出b的值.
(2)求S与b的函数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动.如果P、Q分别是从A、B同时出发,
(1)那么几秒后,△PBQ的面积等于9平方厘米?
(2)那么几秒后,点P与点Q之间的距离可能为5厘米吗?说明理由.
(3)那么几秒后,五边形APQCD的面积最小?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如果长方形的长减少4cm,同时它的宽增加7cm,就得到一个正方形,且这个正方形的面积比原来的长方形的面积大100cm2,求该正方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用火柴棒按下列方式搭建三角形:

(1)填表:
三角形个数   1  2  3  4
火柴棒根数   3579
(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);
(3)当有2015根火柴棒时,照这样可以摆多少个三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,正方形ABCD内接于⊙O,其边长为2,则⊙O的内接正三角形EFG的边长为$\sqrt{6}$.

查看答案和解析>>

同步练习册答案