如图,抛物线与x轴交与点A(1,0)与点B, 且过点C(0,3),
(1)求该抛物线的解析式;
(2)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.
抛物线解析式为:y=-x2-2x+3;点P坐标为
解析试题分析:(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;
(2)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标.
试题解析:
解:(1)将A(1,0),C(0,3)代y=-x2+bx+c中得
∴
∴抛物线解析式为:y=-x2-2x+3;
(2)存在.
把B(m,0)代入y=-x2-2x+3;得:m=-3
∴
理由如下:设P点(x,-x2-2x+3)(-3<x<0)
∵
若S四边形BPCO有最大值,则S△BPC就最大,
∴
当时,
∴
当
时,
∴点P坐标为.
考点:二次函数综合题.
科目:初中数学 来源: 题型:解答题
如图,黎叔叔想用60m长的篱笆靠墙MN围成一个矩形花圃ABCD,已知墙长MN=30m.
(1)能否使矩形花圃ABCD的面积为400m2?若能,请说明围法;若不能,请说明理由.
(2)请你帮助黎叔叔设计一种围法,使矩形花圃ABCD的面积最大,并求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)
(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)
(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为 ;
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
甲车在弯路做刹车试验,收集到的数据如下表所示:
速度(千米/时) | 0 | 5 | 10 | 15 | 20 | 25 | … |
刹车距离(米) | 0 | 2 | 6 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线与轴交于点.
(1)平移该抛物线使其经过点和点(2,0),求平移后的抛物线解析式;
(2)求该抛物线的对称轴与(1)中平移后的抛物线对称轴之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.
(1)该文具店这种签字笔平均每周的销售量为 个(用含x的式子表示);
(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;
(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交 y轴与A点,交x轴与B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com