【题目】如图所示,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是( )
A.3组B.4组C.5组D.6组
【答案】D
【解析】
先根据题意AB∥CD,AD∥BC,可得多对角相等,再利用平行四边形的性质可得线段相等,所以有△AFO≌△CEO,△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共6对.
∵AB∥CD,AD∥BC
∴∠ABD=∠CDB,∠ADB=∠CDB
又∵BD=DB
∴△ABD≌△CDB
∴AB=CD,AD=BC
∵OA=OC,OB=OD
∴△ABO≌△CDO,△BOC≌△DOA
∵OB=OD,∠CBD=∠ADB,∠BOF=∠DOE
∴△BFO≌△DEO
∴OE=OF
∵OA=OC,∠COF=∠AOE
∴△COF≌△AOE
∵AB=DC,BC=AD,AC=AC
∴△ABC≌△DCA,
共6组;
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,已知线段, 于点,且, 是射线上一动点, 、分别是, 的中点,过点, , 的圆与的另一交点(点在线段上),连结, .
()当时,则的度数为__________.
()在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,当时,则的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(3,0),以OA为一边在第一象限内画正方形OABC,D(m,0)为x轴上的一个动点,以BD为一边画正方形BDEF(点F在直线AB右侧).
(1)当m>3时(如图1),试判断线段AF与CD的数量关系,并说明理由.
(2)当AF=5时,求点E的坐标;
(3)当D点从A点向右移动4个单位,求这一过程中F点移动的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是什么,并证明你的结论.
(2)当四边形ABCD的对角线满足什么条件时,四边形EFGH是矩形;并利用你给的条件加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某省计划5年内全部地级市通高铁.某高铁在泰州境内的建设即将展开,现有大量的沙石需要运输.某车队有载质量为8t、10t的卡车共12辆,全部车辆运输一次能运输100t沙石.
(1)求某车队载质量为8t、10t的卡车各有多少辆;
(2)随着工程的进展,某车队需要一次运输沙石165t以上,为了完成任务,准备新增购这两种卡车共7辆,车队有多少种购买方案?请你一一求出.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时.
①请直接写出线段DG与PC的数量关系(不要求证明);
②求证:四边形PEFD是菱形;
(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:
A型号客车 | B型号客车 | |
载客量(人/辆) | 45 | 30 |
租金(元/辆) | 600 | 450 |
已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.
(1)求最多能租用多少辆A型号客车?
(2)若七年级的师生共有380人,请写出所有可能的租车方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com