精英家教网 > 初中数学 > 题目详情
如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,.
(1)求证:BH∥CD;

(2)如图:直线AF交DC于F,平分∠EAF,平分∠BAE. 试探究∠,∠AFG的数量关系.
(1)延长AE交DC于点F,根据三角形外角的性质可得∠DCE=∠EFC+90°,再结合可得∠HAE=∠EFC,即可证得结论;(2)∠MAN=∠AFG

试题分析:(1)延长AE交DC于点F,根据三角形外角的性质可得∠DCE=∠EFC+90°,再结合可得∠HAE=∠EFC,即可证得结论;
(2)根据平行线的性质可得∠BAF=∠AFG,根据角平分线的性质可得∠MAN=∠EAN-∠EAM=(∠BAE-∠EAF)=∠BAF,即可得到结果.
(1)延长AE交DC于点F
∵∠DCE=∠EFC+90°,
∴∠HAE=∠EFC
∴BH∥CD;
(2)∵BH∥CD
∴∠BAF=∠AFG
平分∠EAF,平分∠BAE
∴∠MAN=∠EAN-∠EAM=(∠BAE-∠EAF)=∠BAF
∴∠MAN=∠AFG.
点评:平行线的判定与性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

【提出问题】
如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?
【探究过程】
小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?
如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.
以下是几位同学的对话:
A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.
B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.
(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)
【解决问题】
根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在线段AB上,C、D分别是AM、MB的中点,如果AB=a,用含a的式子表示CD的长为_____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,与∠1 是同位角的是
A.∠2B.∠3C.∠4D.∠5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠A=70°,∠C=60°,D、E分别是AB、AC上的点,且DE∥BC,则∠ADE的度数为

A.60°                B.70°            C.50°            D.80°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示将一张长方形纸条ABCD沿EF折叠后,ED与BF交于G点,若∠EFG=50°,则∠BGE的度数为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果延长线段ABC,使得,那么ACAB等于
A.2∶1B.2∶3C.3∶1D.3∶2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

命题“全等三角形的面积相等”的逆命题是                              
逆命题           (填“成立”或“不成立”).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,D、E分别是AC、AB上的点,∠ADE=40°,∠C=40°,∠AED=80°

(1)       DE与BC平行吗?请说明理由;
(2)       求∠B的度数。

查看答案和解析>>

同步练习册答案