精英家教网 > 初中数学 > 题目详情
5.某公司一月份营业额640万元,预计到三月份可达到1000万元,求该公司二、三月份营业额平均增长率是多少?如果4月份营业额稳定增长(即月增长率与前两月的增长率相同).那么请你估计4月份的营业额将达到多少万元?

分析 设该公司二、三月份营业额平均增长率是x,则二月份的营业额是640(1+x)万元,三月份的营业额是640(1+x)2万元,而题中又已知三月份营业额达到1000万元,进而建立等量关系列出方程求解;利用解方程得到的增长率,用三月份的营业额×(1+增长率)即为4月份的营业额.

解答 解:设该公司二、三月份营业额平均增长率是x,根据题意得:
 640(1+x)2=1000,
解得:x1=$\frac{1}{4}$=25%,x2=-$\frac{9}{4}$(不合题意,舍去).
所以可以估计4月份的营业额将达到1000(1+25%)=1250(万元).
答:该公司二、三月份营业额平均增长率是25%,估计4月份的营业额将达到1250万元.

点评 本题考查了一元二次方程的应用.用到的基本的数量关系是:增长后的量=增长前的量×(1+增长率),关键是要求学生搞清关系式中增长前的量和增长后的量在原题中所代表的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且∠A:∠B:∠C=1:1:2,则下列说法中,错误的是(  )
A.∠C=90°B.a=bC.c2=2a2D.a2=b2-c2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.因式分解:2x3-8x2+8x=2x(x-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,由∠1=∠2,CB=CD,CA=CE,得△ABC≌△EDC的根据是(  )
A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若二元一次方程组$\left\{\begin{array}{l}{2x-3y=15}\\{ax+by=1}\end{array}\right.$和$\left\{\begin{array}{l}{cx-dy=5}\\{x+y=1}\end{array}\right.$的解相同,则可通过解方程组$\left\{\begin{array}{l}{2x-3y=15}\\{x+y=1}\end{array}\right.$求得这个解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.为了准备要运动会开幕式,学校在八(1)班与八(5)班中挑选一个班的同学组成彩旗方队,经同学们调查这两个班所有学生的身高并计算得到$\overline{x}$(1)=1.60,$\overline{x}$(5)=1.60,S(1)2=423.6,S(5)2=173.4,学校应选(  )
A.八(1)班B.八(5)班C.都一样D.无法判断

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一个数的相反数与该数的倒数的和等于0,则这个数的绝对值等于(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,直线y=$\frac{1}{3}$x+b与x轴交于点A,与y轴交于点B,且OB=2.
(1)求一次函数的关系式;
(2)若直线l过点B且与x轴交于点C,S△OBC=$\frac{1}{2}{S_{△OAB}}$,求直线l的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,△ABC中,BC=8,CA=4$\sqrt{3}$,∠C=60°,点E、F、D分别在边AB、AC、BC上(点E点A、B不重合),EF∥BC,设EF=x,△DEF中边EF上的高为y.
(1)求证:△AEF∽△ABC;
(2)求出y与x之间的函数关系式,并写出自变量x的取值范围;
(3)试问在BC上是否存在点D,使得△DEF是等腰直角三角形?若存在,求出CD的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案