精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABCPQ分别是BCAC上的点PRABPSAC垂足分别是RSAQ=PQPR=PS下面三个结沦:AS=AR:②QPAR;③△BRP≌△CSP.其中正确的是( )

A. ①③ B. ②③ C. ①② D. ①②③

【答案】C

【解析】

如图,连接AP,

Rt△ASPRt△ARP中,

∵AP=AP,PS=PR,

∴△ASP≌Rt△ARP(HL),

∴∠QAP=∠RAP,AS=AR(全等三角形对应角和对应边相等)正确,

∵AQ=PQ,

∴∠QAP=∠QPA(等边对等角),

∴∠RAP=∠QPA,

∴QP∥ AR(内错角相等,两直线平行)正确,

∵在△BRP与△CSP中,无法得出除直角和PR=PS外的其它对应角或对应边相等,

∴无法证明△BRP≌△CSP ③错误;

故正确的有①②.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:

甲的解答为:原式=a+=a+(1-a)=1.

乙的解答为:原式=a+=a+(a-1)=2a-1=17.

两种解答中,_____的解答是错误的,错误的原因是当a=9时______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(理解新知)

如图,已知,在内部画射线,得到三个角,分别为,若这三个角中有一个角是另外一个角的2倍,则称射线的“2倍角线”

(1)角的平分线 这个角的“2倍角线”;(填“是”或“不是”)

(2)若,射线的“2倍角线”,则

(解决问题)

如图,已知,射线出发,以每秒的速度绕点逆时针旋转:射线出发,以每秒的速度绕点顺时针旋转,射线同时出发,当一条射线回到出发位置的时候,整个运动随之停止.设运动的时间为.

(3)当射线旋转到同一条直线上时,求的值;

(4)若三条射线中,一条射线恰好是以另外两条射线为边的角的“2倍角线”,直接写出所有可能的的值.(本题中所研究的角都是小于等于的角.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=6,NAB上一点,且AN=2,∠BAC的平分线交BC于点DMAD上的动点,连结BMMN,则BM+MN的最小值是(  )

A. 8 B. 10 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:1.4,2.2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,小正方形的边长为1,△ABC的顶点在格点上.

(1)判断△ABC是否是直角三角形?并说明理由.

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.

(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°AC=4

1)若BC=2,求AB的长;

2)若BC=aAB=c,求代数式(c22﹣(a+42+4c+2a+3)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的弦CD的长

查看答案和解析>>

同步练习册答案