如图l,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m-420|+(2n-40)2=0,射线OP从OB处绕点0以4度/秒的速度逆时针旋转.
(1)试求∠AOB的度数;
(2)如图l,当射线OP从OB处绕点O开始逆时针旋转,同时射线OQ从OA处以l度/秒的速度绕点0顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?
(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.
(1)160°;(2)30秒或34秒;(3)2
【解析】
试题分析:(1)先根据非负数的性质求得m=140,n=20,即得∠AOC=140°,∠BOC=20°,从而得到结果;
(2)设他们旋转x秒时,使得∠POQ=10°,则∠AOQ=x°,∠BOP=4x°,分局①当射线OP与射线OQ相遇前,②当射线OP与射线OQ相遇后,两种情况,结合旋转的性质分析即可;
(3)设t秒后这两条射线重合于射线OE处,则∠BOE=4t°,先根据角平分线的性质可得∠COD的度数,即可求得∠BOD的度数,再根据即可求得∠COE的度数,从而得到∠DOE、∠BOE的度数,即可求得结果.
(1)∵|3m-420|+(2n-40)2=0
∴3m-420=0且2n-40=0
∴m=140,n=20
∴∠AOC=140°,∠BOC=20°
∴∠AOB=∠AOC+∠BOC=160°;
(2)设他们旋转x秒时,使得∠POQ=10°,则∠AOQ=x°,∠BOP=4x°
①当射线OP与射线OQ相遇前有:∠AOQ+∠POQ+∠BOP+∠POQ =∠AOB=160°
即x+4x+10=160,解得x=30;
②当射线OP与射线OQ相遇后有:∠AOQ+∠POQ+∠BOP-∠POQ =∠AOB=160°
即x+4x-10=160,解得x=34
答:当他们旋转30秒或34秒时,使得∠POQ=10°;
(3)设t秒后这两条射线重合于射线OE处,则∠BOE=4t°
∵OD为∠AOC的平分线
∴∠COD=∠AOC=70°
∴∠BOD=∠COD+∠BOC=70°+20°=90°
∵
∴∠COE=×90°=40°
∠DOE=30°,∠BOE=20°+40°=60°
即4t=60,t=15
∴∠DOE=15x°
即15x=30,x=2.
考点:旋转的综合题
点评:本题知识点较多,综合性强,难度较大,需要学生熟练掌握旋转的性质.
科目:初中数学 来源: 题型:
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012-2013学年湖北省武汉市青山区七年级第一学期期末测试数学试卷(带解析) 题型:解答题
如图l,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m-420|+(2n-40)2=0,射线OP从OB处绕点0以4度/秒的速度逆时针旋转.
(1)试求∠AOB的度数;
(2)如图l,当射线OP从OB处绕点O开始逆时针旋转,同时射线OQ从OA处以l度/秒的速度绕点0顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?
(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com