精英家教网 > 初中数学 > 题目详情

【题目】下列各组数据中能作为直角三角形的三边长的是(
A.
B.1,1,
C.4,5,6
D.1, ,2

【答案】D
【解析】解:A、∵( 2+( 2≠( 2,∴此组数据不能作为直角三角形的三边长,故本选项错误;

B、∵12+12=2≠( 2,∴此组数据不能作为直角三角形的三边长,故本选项错误;

C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;

D、∵12+( 2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.

故选D.

【考点精析】利用勾股定理的逆定理对题目进行判断即可得到答案,需要熟知如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(x2y)(x+3y)﹣(2xy)(x4y),其中x=﹣1y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【知识链接】 有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.
例如: 的有理化因式是 ;1﹣ 的有理化因式是1+
分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
= = ﹣1, = =
(1)【知识理解】 填空:2 的有理化因式是
直接写出下列各式分母有理化的结果:
=;② =
(2)【启发运用】 计算: + + +…+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;

(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;

(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个图形和它经过平移所得的图形中,两组对应点所连的线段的关系是(

A.平行B.相等

C.平行(或在同一条直线上)且相等D.既不平行,又不相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),求Wx之间的函数表达式(利润=收入-成本);

(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?

查看答案和解析>>

同步练习册答案