分析 (1)作直径BE,连接OD、DE,如图,利用圆周角定理得到∠BDE=90°,∠E=∠BAD,由于∠BAD=∠BDC.则∠E=∠BDC,加上∠DBO=∠BDO,则∠BDC+∠BDO=90°,然后根据切线的判定定理可得到CD是⊙O的切线;
(2)先根据直角斜边上中线性质得DB=OB=OD,则△OBD为等边三角形,所以S△OBD=$\frac{\sqrt{3}}{4}$,∠BOD=60°,再作DF⊥OA于F,如图,则DF=$\frac{1}{2}$OD=$\frac{1}{2}$,所以S△ODA=$\frac{1}{4}$,然后利用四边形AOBD的面积=S△OBD+S△ODA进行计算即可.
解答 (1)证明:作直径BE,连接OD、DE,如图,
∵BE为直径,
∴∠BDE=90°,
∴∠DBE+∠E=90°,
∵∠E=∠BAD,∠BAD=∠BDC.
∴∠E=∠BDC,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠BDC+∠BDO=90°,即∠CDO=90°,
∴OD⊥CD,
∴CD是⊙O的切线;
(2)解:∵OB=CB,
∴BD为直角△ODC的斜边OC的中线,
∴DB=OB=OD,
∴△OBD为等边三角形,
∴S△OBD=$\frac{\sqrt{3}}{4}$OB2=$\frac{\sqrt{3}}{4}$,∠BOD=60°,
∵OA⊥OB,
∴∠AOD=30°,
作DF⊥OA于F,如图,
在Rt△ODF中,DF=$\frac{1}{2}$OD=$\frac{1}{2}$,
∴S△ODA=$\frac{1}{2}$•1•$\frac{1}{2}$=$\frac{1}{4}$,
∴四边形AOBD的面积=S△OBD+S△ODA=$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$=$\frac{\sqrt{3}+1}{4}$.
点评 本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了圆周角定理.
科目:初中数学 来源: 题型:选择题
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 13cm | B. | 6cm | C. | 6cm或26cm | D. | 3cm或13cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=2\\ y=-1\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=4\\ y=1\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=4\\ y=-1\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | β-9α=1 | B. | 9α+4β=1 | C. | 3α+2β=1 | D. | 4β-9α+1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com