精英家教网 > 初中数学 > 题目详情
如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(米2)与x(米)的关系式为______.(不要求写出自变量x的取值范围)
∵AB边长为x米,
而菜园ABCD是矩形菜园,
∴BC=
1
2
(30-x),
菜园的面积=AB×BC=
1
2
(30-x)•x,
∴y=-
1
2
x2+15x.
故填空答案:y=-
1
2
x2+15x.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
8
3
x+8
上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HKPB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两条抛物线y1=-
1
2
x2+1,y2=-
1
2
x2-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为(  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数的图象是由y=-x2向右平移1个单位,再向上平移4个单位所得到.
(1)求二次函数的解析式;
(2)若点P是抛物线对称轴l上一动点,求使AP+CP最小的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-x+c经过点Q(-2,
3
2
),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销售量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.
(1)求y与x之间的函数关系式;
(2)在超市对该种商品投入不超过10000元的情况下,要使得一周的销售利润达到8000元,销售单价应定为多少元?
(3)利用配方法,请你为超市估算一下,若要获得最大利润,一周应进货多少件?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠ACC′=α(30°<α<90°(图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.

查看答案和解析>>

同步练习册答案