如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=ED,延长DB到点F,使DB到点F,使FB=BD,连接AF.
⑴△BDE∽△FDA;
⑵试判断直线AF与⊙O的位置关系,并给出证明。
(1)证明见解析;(2)相切,证明见解析.
【解析】
试题分析:(1)因为∠BDE公共,夹此角的两边BD:DF=ED:AD=2:3,由相似三角形的判定,可知△BDE∽△FDA.
(2)连接OA、OB、OC,证明△OAB≌△OAC,得出AO⊥BC.再由△BDE∽△FDA,得出∠EBD=∠AFD,则BE∥FA,从而AO⊥FA,得出直线AF与⊙O相切.
试题解析:(1)在△BDE和△FDA中,
∵FB=BD,AE=ED,AD=AE+ED,FD=FB+BD
∴,
又∵∠BDE=∠FDA,
∴△BDE∽△FDA.
(2)直线AF与⊙O相切.
证明:连接OA,OB,OC,
∵AB=AC,BO=CO,OA=OA,
∴△OAB≌△OAC,
∴∠OAB=∠OAC,
∴AO是等腰三角形ABC顶角∠BAC的平分线,
∴,
∴AO⊥BC,
∵△BDE∽△FDA,得∠EBD=∠AFD,
∴BE∥FA,
∵AO⊥BE知,AO⊥FA,
∴直线AF与⊙O相切.
考点: 1.切线的判定;2.三角形的角平分线、中线和高;3.相似三角形的判定与性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
A、(0,0) | ||||||||
B、(
| ||||||||
C、(1,1) | ||||||||
D、(
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com