分析 通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC,套入扇形的面积公式即可得出结论.
解答 解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,
∴OB=$\sqrt{O{A}^{2}-A{B}^{2}}$=$\sqrt{3}$,sin∠AOB=$\frac{AB}{OA}$=$\frac{1}{2}$,∠AOB=30°.
同理,可得出:OD=1,∠COD=60°.
∴∠AOC=∠AOB+(180°-∠COD)=30°+180°-60°=150°.
在△AOB和△OCD中,有$\left\{\begin{array}{l}{AO=OC}\\{AB=OD}\\{BO=DC}\end{array}\right.$,
∴△AOB≌△OCD(SSS).
∴S阴影=S扇形OAC.
∴S扇形OAC=$\frac{150}{360}$πR2=$\frac{150}{360}$π×22=$\frac{5}{3}$π.
故答案为:$\frac{5}{3}$π.
点评 本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出S阴影=S扇形OAC.本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{24}{5}$ | B. | $\frac{12}{5}$ | C. | 5 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
天数 | 频数 | 频率 |
3 | 20 | 0.10 |
4 | 30 | 0.15 |
5 | 60 | 0.30 |
6 | a | 0.25 |
7 | 40 | 0.20 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com