精英家教网 > 初中数学 > 题目详情
(2013•南开区一模)阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CBO均为等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构成一个三角形,在计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而等到的△BCE即时以AD、BC、OC+OD的长度为三边长的三角形(如图2).
(I)请你回答:图2中△BCE的面积等于
2
2

(II)请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

分析:(I)由等腰直角三角形的性质、旋转的性质知,△OEB与△BOC是等底同高的两个三角形;
(II)如图2,根据正方形的性质推知△ABE和△ACG都是等腰直角三角形,则根据旋转的性质推知S△AEG=S△AEM=S△AMG=S△ABC=1,所以易求△EGM的面积.
解答:解:(I)∵△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°,
∴OD=OC,OA=OB.
又∵将△AOD绕点O顺时针旋转90°得△OBE,
∴∠DOE=90°,OD=OE,
∴点C、O、E三点共线,
∵OC=OE,
∴△OEB与△BOC是等底同高的两个三角形,
∴S△OEB=S△BOC=1,
∴S△BCE=S△OEB+S△BOC=2.
故答案为:2;

(II)如图2,∵四边形AEDB和四边形ACFG都是正方形,
∴△ABE和△ACG都是等腰直角三角形,
∴S△AEG=S△AEM=S△AMG=S△ABC=1,
∴S△EGM=S△AEG+S△AEM+S△AMG=3,即以EG、FH、ID的长度为三边长的三角形的面积等于3.
故答案是:3.
点评:本题考查了全等三角形的判定与性质、三角形的面积、等腰三角形的性质以及正方形的性质.注意平移、旋转的性质的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南开区一模)北京市环保检测中心网站公布的2012年3月31日的PM2.5研究性检测部分数据如下表:
时间 0:00 4:00 8:00 12:00 16:00 20:00
PM2.5(mg/m3 0.027 0.035 0.032 0.014 0.016 0.032
则该日这6个时刻的PM2.5的众数和中位数分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)如图,已知:△ABC内接于⊙O,点D在OC的延长线上,∠B=∠D=30°.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若AC=6,求⊙O的半径和线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)纳米是一个长度单位,1纳米=0.000000001米,如果把水分子看成是球形,它的直径约为0.4纳米,用科学记数法表示为4×10n米,那么n的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)解不等式组
x-3
2
<-1
x
3
+2≥-x

查看答案和解析>>

同步练习册答案