精英家教网 > 初中数学 > 题目详情
不能判定四边形ABCD为平行四边形的题设是(   )
A.AB=CD AB ∥CDB.∠A=∠C∠B=∠D
C.AB=AD BC=CDD.AB=CD AD=BC
C.

试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.因此,根据平行四边形的判定分别作出判断:
A.可由(3)判定四边形ABCD为平行四边形;      
B.可由(4)判定四边形ABCD为平行四边形;
C.不能由上述5种判定方法判定四边形ABCD为平行四边形;
D.可由(2)判定四边形ABCD为平行四边形
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).
探究 如图1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:

(1)CQ与BE的位置关系是___  ___,BQ的长是____  ___dm;
(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=,tan37°=)
拓展 在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.
延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,□ABCD中,点E在BC的延长线上,且DE∥AC.请写出BE与BC的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
其中正确的序号是______________

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一块平行四边形的实验田里种植四种不同的农作物,现将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是10m2,15m2, 30m2,则整个这块实验田的面积为     m2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是(  )
A.60° B.70°C.75°D.80°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图平行四边形ABCD中AB=AD=6,∠DAB=60度,F为AC上一点,E为AB中点,则EF+BF的最小值为        

查看答案和解析>>

同步练习册答案