精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点(小正方形的顶点叫格点)上,连接BD.

(1)利用格点在图中画出ABDAD边上的高,垂足为H.

(2)①画出将ABD先向右平移2格,再向上平移2格得到的A1B1D1

②平移后,求线段AB扫过的部分所组成的封闭图形的面积.

【答案】(1)画图见解析;(2)画图见解析;(3)9

【解析】分析:(1)根据三角形高线的定义进行作图;
(2)①根据平移的方向和距离作出平移后的三角形;②线段AB扫过的部分所组成的封闭图形可以看成由一个平行四边形和一个直角三角形组成,计算出它们的面积并相加即可.

详解:

(1)如图:

线段DH即为所求.
(2)①如图:

A1B1D1即为所求.
②如图,线段AB扫过的部分所组成的封闭图形(阴影部分)的面积=2×4+×1×2=8+1=9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润 2000元。

该加工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨。受人员限制,两种加工方式不可同时进行。受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。为此,该厂设计了两种可行方案:

方案一:尽可能多地制成奶片,其余直接销售鲜奶;

方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

你认为哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛掷一个质地均匀且六个面上依次刻有1﹣6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是(
A.出现的点数是7
B.出现的点数不会是0
C.出现的点数是2
D.出现的点数为奇数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为αα90°),若∠1=110°,则∠α=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.

(1)求该店有客房多少间?房客多少人?

(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程也可以用来解决一些几何问题,如图,PABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把ABC分成六个小三角形,其中四个小三角形面积已在图上标明,设BPD的面积为CPE的面积为

(1) (填数字);

(2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(x3x+3)x轴上一点,则点P的坐标是(

A.(06)B.(0,﹣6)C.(60)D.(60)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是(
A.18 ﹣9π
B.18﹣3π
C.9
D.18 ﹣3π

查看答案和解析>>

同步练习册答案