【题目】如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.
【答案】(1)y=;(2)﹣1<x<0或x>1;(3)存在,D(﹣1,﹣4).
【解析】(1)把A坐标代入一次函数解析式求出m的值,确定出一次函数解析式,把A坐标代入反比例解析式求出k的值,即可确定出反比例函数解析式;
(2)由题意,找出一次函数图象位于反比例函数图象上方时x的范围即可;
(3)存在,理由为:由四边形ABDC为平行四边形,得到AC=BD,且AC∥BD,由AC与x轴垂直,得到BD与x轴垂直,根据A坐标确定出AC的长,即为BD的长,联立一次函数与反比例函数解析式求出B坐标,即可确定出D坐标.
解:(1)把A(1,2)代入y=mx得:m=2,
则一次函数解析式是y=2x,
把A(1,2)代入y=得:k=2,
则反比例解析式是y=;
(2)根据图象可得:﹣1<x<0或x>1;
(3)存在,理由为:
如图所示,四边形ABDC为平行四边形,
∴AC=BD,AC∥BD,
∵AC⊥x轴,
∴BD⊥x轴,
由A(1,2),得到AC=2,
∴BD=2,
联立得:,
消去y得:2x=,即x2=1,
解得:x=1或x=﹣1,
∵B(﹣1,﹣2),
∴D的坐标(﹣1,﹣4).
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点B表示的为-5,点A是数轴上一点,且AB=12,动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,动点H从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为()秒.
(1)写出数轴上点A表示的数 ;
(2)当动点P,H同时从点A和点B出发,运动秒时,点P表示的数 ;点H表示的数 ;(用含的代数式表示)
(3)动点P、H同时出发,问点H运动多少秒时追上点P?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形
B.一组对边平行,一组对角相等的四边形是平行四边形
C.矩形的对角线相等
D.对角线相等的四边形是矩形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)在x>0的条件下,根据图象说出反比例函数的值大于一次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知, , ,试说明:BE∥CF.
完善下面的解答过程,并填写理由或数学式:
解:∵ (已知)
∴AE∥ ( )
∴( )
∵(已知)
∴ ( )
∴DC∥AB( )
∴( )
即
∵(已知)
∴( )
即
∴BE∥CF( ) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).
(1)当t=2时,①AB= ___ cm.②求线段CD的长度.
(2)用含t的代数式表示运动过程中AB的长.
(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4),一次函数 的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE上的一个动点.
(1)求b的值;
(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;
(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com