精英家教网 > 初中数学 > 题目详情

【题目】如图1,在以O为原点的平面直角坐标系中,点A的坐标为(0,2),点P(s,t)在抛物线y= x2+1上,点P到x轴的距离记为m,PA=n.

(1)若s=4,分别求出m、n的值,并比较m与n的大小关系;
(2)若点P是该抛物线上的一个动点,则(1)中m与n的大小关系是否仍成立?请说明理由;
(3)如图2,过点P的直线y=kx(k≠0)与抛物线交于另一点Q连接PA、QA,是否存在k使得PA=2QA?若存在,请求出k的值;若不存在,请举例说明.

【答案】
(1)

解:∵当s=4时,点P(s,t)在抛物线y= x2+1上,

∴t=5,

∵点P到x轴的距离记为m,

∴m=5,

∴P(4,5)

∵A(0,2),

∴PA= =5,

∴m=n,

∴m=5,n=5,m=n


(2)

解:m=n 仍然成立.

设P(s, s2+1),

∴m= s2+1,

∴n= = s2+1,

∴m=n 仍然成立


(3)

解:如图,

分别过P、Q作PN⊥x轴,QM⊥x轴,

∵PA=2QA,

由(2)知,PN=2QM,

∵△QOM∽△PON,

∴ON=2OM,

设Q(a, a2+1),

∴P[2a, (2a)2+1],

由PN=2QM得, (2a)2+1=2( a2+1),

∴a=

当a= 时,

∴P(2 ,3),

∴k=

当a=﹣ 时,

∴P(﹣2 ,3),

∴k=﹣

∴k=±


【解析】(1)根据抛物线上点的横坐标代入抛物线解析式中,求出t=5,再用两点间的距离公式求出PA,即可;(2)设出点P(S, S2+1),求出m,n即可;(3)分别过P、Q作PN⊥x轴,QM⊥x轴,由△QOM∽△PON得到ON=2OM,由PN=2QM建立方程, (2a)2+1=2( a2+1),求出a= ,再分两种情况计算即可.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为(
A.2cm
B.2 cm
C.4cm
D.4 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+5经过点B(3,9)和A(﹣6,m).

(1)求k,m的值;

(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④3≤n≤4中,
正确的是(

A.①②
B.③④
C.①④
D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1=ax2﹣4ax+3(a≠0)与y轴交于点A,A、B两点关于对称轴对称,直线OB分别与抛物线的对称轴相交于点C.
(1)直接写出对称轴及B点的坐标;
(2)已知直线y2=bx﹣4b+3(b≠0)与抛物线的对称轴相交于点D. ①判断直线y2=bx﹣4b+3(b≠0)是否经过点B,并说明理由;
②若△BDC的面积为1,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b与反比例函数y= (x<0)的图象交于点A.与x轴、y轴分别交于点B、C,过点A作AD⊥x轴于点D,过点D作DE∥AB,交y轴于点E.己知四边形ADEC的面积为6.
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2.求点E的坐标.

查看答案和解析>>

同步练习册答案