精英家教网 > 初中数学 > 题目详情
9.已知:正方形ABCD内一点E,连接EA、EB、EC.
(1)若EA2+EC2=2EB2,请说明点E必在对角线AC上.
(2)若EA+EB+EC的最小值为$\sqrt{2}$($\sqrt{3}$+1),求正方形ABCD的边长.

分析 (1)如图1中,将△ABE绕点B顺时针旋转90°得△CBE′,连接EE′.只要证明CE′2+EC2=EE′2,推出∠ECE′=90°,推出∠ECB+∠BCE′=∠ECB+∠BAE=90°,即A、E、C共线,推出点E在正方形ABCD的对角线上.
(2)如图2中,将△ABE绕点B逆时针旋转60°得△A′BE′,连结A′C,作A′H⊥BC于H.首先证明△EBE′为等边三角形,推出EE′=BE,A′E′=AE,BA′=BA,∠ABA′=60°,因为A′E′+E′E+EC≥A′C,所以AE+BE+CE≥AC(当且仅当点E′、点E在AC上时,取等号),AE+BE+CE有最小值,最小值为A′C的长,设正方形的边长为a,在Rt△A′BH中,∠A′BH=30°,A′H=$\frac{1}{2}$A′B=$\frac{1}{2}$a,BH=$\sqrt{3}$A′H=$\frac{\sqrt{3}}{2}$a,CH=a+$\frac{\sqrt{3}}{2}$a,在Rt△A′CH中,根据A′C2=A′H2+CH2,列出方程即可解决问题.

解答 (1)证明:如图1中,将△ABE绕点B顺时针旋转90°得△CBE′,连接EE′.

∵BE=BE′,∠EBE′=90°,AE=CE′,
∴EE′=$\sqrt{2}$BE,
∵EA2+EC2=2EB2
∴CE′2+EC2=EE′2
∴∠ECE′=90°,
∴∠ECB+∠BCE′=∠ECB+∠BAE=90°,
∴A、E、C共线,
∴点E在正方形ABCD的对角线上.

(2)解:如图2中,将△ABE绕点B逆时针旋转60°得△A′BE′,连结A′C,作A′H⊥BC于H.

∵△ABE绕点B逆时针旋转60°得△A′BE′,
∴BE=BE′,∠EBE′=60°,
∴△EBE′为等边三角形,
∴EE′=BE,
∴A′E′=AE,BA′=BA=2,∠ABA′=60°,
∵A′E′+E′E+EC≥A′C,
∴AE+BE+CE≥AC(当且仅当点E′、点E在AC上时,取等号),
∴AE+BE+CE有最小值,最小值为A′C的长,设正方形的边长为a,
在Rt△A′BH中,∠A′BH=30°,
∴A′H=$\frac{1}{2}$A′B=$\frac{1}{2}$a,BH=$\sqrt{3}$A′H=$\frac{\sqrt{3}}{2}$a,
∴CH=a+$\frac{\sqrt{3}}{2}$a,
在Rt△A′CH中,A′C2=A′H2+CH2
∴($\frac{1}{2}$a)2+(a+$\frac{\sqrt{3}}{2}$a)2=($\sqrt{6}$+$\sqrt{2}$)2
解得a=2.
∴正方形的边长为2.

点评 本题正方形的性质、最短问题、旋转变换、勾股定理以及勾股定理的逆定理等知识,解题的关键是学会利用旋转变换添加辅助线,构造全等三角形,学会利用两点之间线段最短解决最短问题,所以中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知:关于x的一元二次方程ax2-2(a-1)x+a-2=0(a>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2•x1,求这个函数的表达式;
(3)将(2)中所得的函数的图象在直线a=2的左侧部分沿直线a=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a的函数y=2a+b的图象与此图象有两个公共点时,b的取值范围是-11<b<-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.且a+b-c=m,①填表:②观察下表猜想:m×l=4S.(用含s的代数式表示)③证明②中的结论.
三边a、b、cml×mS
3、4、5224 
5、12、134120 30 
8、15、17624060 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知a2b2+a2+b2+10ab=-16,求a2+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先阅读下列解题过程,然后解答问题(1)、(2)
解方程:|x+3|=2.
解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1;
当x+3<0时,原方程可化为:x+3=-2,解得x=-5.
所以原方程的解是x=-1,x=-5.
(1)解方程:|3x-1|-5=0;
(2)探究:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,折线表示小丽骑车离家的距离与时间的关系,小丽上午九时离开家,下午十五时到家,根据折线图所提供的信息,思考并回答下列问题:
(1)小丽什么时间离家最远?离家最远距离是多少?
(2)小丽一共休息了几次?各是从什么时间开始的?各休息多少时间?
(3)小丽什么时刻离家的距离是15千米?(只需回答结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.圆周率π=3.1415926…,取近似值3.142,是精确到千分位;近似数2.428×105精确到百位.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为SABCD和SBFDE,现给出下列命题:①若$\frac{{S}_{ABCD}}{{S}_{BFDE}}$=$\frac{2+\sqrt{3}}{2}$,则tan∠EDF=$\frac{\sqrt{3}}{3}$;②若DE2=BD•EF,则DF=2AD,则(  )
A.①是假命题,②是假命题B.①是真命题,②是假命题
C.①是假命题,②是真命题D.①是真命题,②是真命题

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知关于x的一元二次方程x2+3x+k-1=0有实根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,设二次函数y=x2+3x+k-1与x轴交于A、B两点,与y轴交于点C.
①求△ABC的面积;
②连接AC,过B作BH⊥AC于H,求BH的长.

查看答案和解析>>

同步练习册答案