精英家教网 > 初中数学 > 题目详情

【题目】纸在某誊印社复印文件,复印页数不超过时每页收费元;复印页数超过时,超过部分每页收费元.在某图书馆复印同样的文件,不论复印多少页,每页收费元,如何根据复印的页数选择复印的地点使总价格比较便宜?

【答案】当复印文件页数小于时,选择某图书馆价格便宜;当复印文件为页时,选择某誊印社及某图书馆复印价格相同;当复印文件页数超过时,选择某誊印社价格便宜.

【解析】

设当复印文件页数为x时,在某誊印社及某图书馆复印价格相同,根据总价=单价×数量即可得出关于x的一元一次方程,解之即可得出x的值,再结合题意即可得出结论.

解:设当复印文件页数为时,在某誊印社及某图书馆复印价格相同,

根据题意得:

解得:

∴当复印文件页数小于时,选择某图书馆价格便宜;

当复印文件为页时,选择某誊印社及某图书馆复印价格相同;

当复印文件页数超过时,选择某誊印社价格便宜.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ABCD,ABE与∠CDE两个角的角平分线相交于点F.

(1)如图1,若∠E=80°,求∠BFD的度数.

(2)如图2,若∠ABM=ABF,CDM=CDF,试写出∠M与∠E之间的数量关系并证明你的结论.

(3)若∠ABM=ABF,CDM=CDF,E=m°,请直接用含有n,m°的代数式表示出∠M.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过CCB⊥x轴于B,

(1)求ab的值;

(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,求出P点坐标;

(3)若过BBD∥ACy轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,

①求:∠CAB+∠ODB的度数;

②求:∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.

求证:∠C=∠D.

证明:因为∠1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因为__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣(x+1)(x﹣m)交x轴于A,B两点(A在B的左侧,m>0),交y轴正半轴于点C,过点C作x轴的平行线交抛物线于另一点E,抛物线的对称轴交CE于点F,以C为圆心画圆,使⊙C经过点(0,2).

(1)直接写出OB,OC的长.(均用含m的代数式表示)
(2)当m>2时,判断点E与⊙C的位置关系,并说明理由.
(3)当抛物线的对称轴与⊙C相交时,其中下方的交点为D.连结CD,BD,BC.
①当m>3,且C,D,B三点在同一直线上时,求m的值.
②当△BCD是以CD为腰的等腰三角形时,求m的值.(直接写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是以O为圆心,AB为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P重合,当此三角板绕点P旋转时,它的斜边和直角边所在的直线与直径AB分别相交于C,D两点.设线段AD的长为x,线段BC的长为y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是两直线y1=2x+6、y2=2x﹣6中某条上的一点,若△APD是等腰Rt△,则点D的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当均为正整数时,若,用含m、n的式子分别表示,得       

(2)利用所探索的结论,找一组正整数,填空:    =(      )2

(3)若,且均为正整数,求的值.

【答案】(1);(2)4,2,1,1(答案不唯一);(3)=713

【解析】分析:(1)由a+b=(m+n)2,展开比较系数可得答案;

(2)取m=1,n=1,可得ab的值,可得答案;

(3)由题意得mn的方程,解方程可得mn,可得a值.

详解:(1)∵a+b=(m+n)2

∴a+b=m2+3n2+2mn

∴a=m2+3n2,b=2mn.

故答案为:m2+3n2,2mn.

(2)设m=1,n=1,

∴a=m2+3n2=4,b=2mn=2.

故答案为4、2、1、1.

(3)由题意,得:

a=m2+3n2,b=2mn

∵4=2mn,且m、n为正整数,

∴m=2,n=1或者m=1,n=2,

∴a=22+3×12=7,或a=12+3×22=13.

点睛:本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.

型】解答
束】
28

【题目】如图1,已知点A(a,0),B(0,b),且a、b满足

□ABCD的边ADy轴交于点E,且EAD中点,双曲线经过C、D两点.

(1)若点D点纵坐标为t,则C点纵坐标为 (含t的代数式表示),k的值为

(2)点P在双曲线上,点Qy轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;

(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,MHT的中点,MNHT,交ABN,连接FN,当TAF上运动时,试判断∠ATH与∠AFN之间的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“校园安全”受到全社会的广泛关注,信丰县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图所示的两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题

(1)接受问卷调查的学生共有  人,扇形统计图中“基本了解”部分所对应扇形圆心角是  度;

(2)请补全条形统计图;

(3)若该中学共有学生1200人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.

查看答案和解析>>

同步练习册答案