【题目】已知数轴上点A对应的数是20,点B对应的数是﹣30,甲从A点出发以每秒1个单位长度的速度匀速运动,乙从B出发以每秒3个长度单位的速度匀速运动,若甲乙两人同时出发
(1)若甲和乙在数轴上运动3秒后,
①它们相距最远时,甲所在的位置对应的数是 ,乙所在的位置对应的数是
②它们距离最近时,甲所在的位置对应的数是 ,乙所在的位置对应的数是
(2)若甲和乙同时向右,出发多少秒后,甲和乙相距20个长度单位?
(3)若甲和乙进行匀速往返跑训练,甲从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……;乙从B点起跑,到达A点后,立即转身跑向B点,到达B点后,又立即转身跑向A点……;两人同时出发,问:起跑后两人第二次相遇的时间是多少?
【答案】(1)①23,-39;②-21,17;(2)15或35;(3)37.5s
【解析】
(1)①当它们相距最远时,甲和乙背道而驰,即甲沿数轴正方向爬行,乙沿数轴负方向爬行,由此分别求出它们所在的位置对应的数;②当它们相距最近时,乙追赶甲,它们同向而行,即甲和乙都沿数轴正方向爬行,由此分别求出它们所在的位置对应的数;
(2)分两种情况进行讨论;
(3)第二次相遇时,两人路程和是3×50=150.
∵甲从A点出发以每秒1个单位长度的速度爬行,乙从B点出发以每秒3个单位长度的速度运动,若它们同时出发运动3秒,∴甲运动路程:1×3=3,
乙运动路程:3×3=9,
①当它们相距最远时,甲和乙背道而驰,即甲沿数轴正方向爬行,乙沿数轴负方向爬行,
此时甲所在的位置对应的数为20+3=23,乙所在的位置对应的数为309=39;
②当它们相距最近时,乙追赶甲,它们同向而行,即甲和乙都沿数轴正方向爬行,此时甲所在的位置对应的数为20-3=17,乙所在的位置对应的数为30+9=-21.
(2)设t秒后,甲和乙相距20个长度单位.
由题意可知,当乙未追上甲,S甲=t,S乙=3t,
S乙-S甲=50-20,
即3t-t=30,得t=15.
当乙追上甲并超过甲20个单位时,S乙-S甲=50+20
即3t-t=70,得t=35.
当t=15或35.
(3)设x秒时两人第二次相遇,
(3+1)x=3×50
x=37.5(s)
答:第二次相遇时需要37.5s.
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
甲、乙两人同时从相距25千米的A地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需资金6000元;若购进3部甲型号手机和2部乙型号手机,共需资金4600元.
(1)求甲、乙型号手机每部进价多少元?
(2)为了提高利润,该店计划购进甲、乙型号手机销售,预计用不多于1.8万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?
(3)若甲型号手机的售价为1500元,乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a元;而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在桌面上,有7个完全相同的小正方体堆成的一个几何体A,如图所示.
(1) 请画出这个几何体A的三视图.
(2) 若将此几何体的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有______个.
(3) 若现在你的手头还有一些相同的小正方体可添放在该几何体上,要保持俯视图和左视图不变,则最多可以添加_______个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=7 cm,AC=25 cm.点P从点A沿AB方向以1 cm/s的速度运动至点B,点Q从点B沿BC方向以6 cm/s的速度运动至点C,P,Q两点同时出发.
(1)求BC的长;
(2)当点P,Q运动2 s时,求P,Q两点之间的距离;
(3)P,Q两点运动几秒时,AP=CQ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①在数轴上没有点能表示+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点O是直线AB上一点,∠COD是直角,OE平分∠BOC.
(1)①、如图1,若∠AOC=50°,求∠DOE的度数;
②、如图1,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);
(2)将图1中的∠COD按顺时针方向旋转至图2所示的位置.
探究∠AOC与∠DOE的度数之间的关系,写出你的结论,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com