精英家教网 > 初中数学 > 题目详情

【题目】如图:直线AB经过点A(0,3)点B( ,0),点M在y轴上,⊙M经过点A、B,交x轴于另一点C.

(1)求直线AB的解析式;
(2)求点M的坐标;
(3)点P是劣弧AC上一个动点,当P点运动时,问:线段PA,PB,PC有什么数量关系?并给出证明.

【答案】
(1)解:设直线AB的解析式为y=kx+b,

把点A(0,3)和点B( ,0)代入y+kx+b得到

解得

∴直线AB的解析式为y=﹣ x+3


(2)解:如图1中,连接BM.设AM=BM=r.

在Rt△BMO中,

∵OM2+OB2=BM2,OM=3﹣r,OB=

∴(3﹣r)2+( 2=r2

∴r=2,

∴OM=3﹣2=1,

∴点M坐标为(0,1)


(3)解:结论:PB=PA+PC,理由如下:

如图2中,连接AC、在PB上截取PN=PC,连接CN.

∵OM⊥BC,

∴OC=OB,

∴AC=AB,

∵tan∠ABO= = =

∴∠ABC=60°,

∴△ABC是等边三角形,

∴AC=CB,∠ACB=∠CAB=60°,

∴∠CPB=∠CAB=60°,∵PC=PN,

∴△PCN是等边三角形,

∴CP=CN,∠PCN=60°,

∴∠PCN=∠ACB=60°,

∴∠PCA=∠NCB,∵PC=CN,CA=CB,

∴△PCA≌△NCB,

∴PA=BN,

∵PB=PN+BN,PN=PC,BN=PA,

∴PB=PA+PC.


【解析】(1)设直线AB的解析式为y=kx+b,把点A(0,3)和点B( ,0)代入y+kx+b得到 解方程组即可.(2)如图1中,连接BM.设AM=BM=r.在Rt△BMO中,由OM2+OB2=BM2 , OM=3﹣r,OB= ,可得(3﹣r)2+( 2=r2 , 解方程即可.(3)结论:PB=PA+PC,如图2中,连接AC、在PB上截取PN=PC,连接CN.首先证明△ACB,△PCN都是等边三角形,再证明△PCA≌△NCB,推出PA=BN,由此即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,DC=14,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与 CD1交于点O,则线段AD1的长为(

A.6
B.10
C.8
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:

计算:.

解法一:原式=

解法二:原式=(-)÷[( )-( )]=÷=-×3=-.

解法三:原式的倒数为()÷(-)=×(-30)-×(-30)+×(-30)-×(-30)=-20+3-5+12=-10,

故原式=-.

(1)上述解法得出的结果不同,肯定有错误的解法,你认为解法________是错误的,在正确的解法中,你认为解法________最简捷;

(2)利用(1)中你认为最简捷的解法计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:

(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).

(2)聪聪家与刚刚家相距多远?

(3)聪聪家向西20米所表示的数是多少?

(4)你认为可用什么办法求数轴上两点之间的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△AOB,AO=AB=5,OB=6.以O为原点,以OB边所在的直线为x轴,以垂直于OB的直线为y轴建立平面直角坐标系.

(1)求点A的坐标;

(2)若点A关于y轴的对称点为M,点N的横、纵坐标之和等于点A的横坐标,请在图中画出一个满足条件的△AMN,并直接在图上标出点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.

品 名

商 店

笔记本

(元/件)

水笔

(元/件)

友谊超市

2.4

2

网 店

2

1.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF分别是ABCD上的点,点GBC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是(   )

A. AEF=∠EFC B. A=∠BCF C. AEF=∠EBC D. BEF+∠EFC=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=8,点EBC边上一点,连接AE,把B沿AE折叠,使点B落在点B处,当CEB为直角三角形时,BE的长为      

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:

63

66

63

61

64

61

63

65

60

63

64

63

(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?
(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.

查看答案和解析>>

同步练习册答案