【题目】如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx﹣2的图象经过A、C两点,并与y轴交于点E,反比例函数y= 的图象经过点A.
(1)写出点E的坐标;
(2)求一次函数和反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.
【答案】
(1)
解:∵一次函数y=kx﹣2的图象与y轴交于点E,
∴x=0时,y=﹣2,
∴点E的坐标为:(0,﹣2);
(2)
解:由题意可知AB∥OE,
∴△ABC∽△EOC,
∴ ,
∴OC= = =4,
点C的坐标为:(4,0),
把点C的坐标(4,0)代入y=kx﹣2得,
4k﹣2=0,
∴k= ,
∴一次函数的解析式为:y= x﹣2,
∵AB=1,代入y= x﹣2,
∴1= x﹣2,
∴x=6,
由上知点A的坐标为:(6,1),
∴1= ,
∴m=6,
∴反比例函数的解析式为:y= ;
(3)
解:当x>0时,∵点A的坐标为:(6,1),
∴由图象可知当x>6时,一次函数的值大于反比例函数的值.
【解析】(1)根据一次函数与y轴相交时,x=0,得出y的值,即可得出E点坐标;(2)利用平行线分线段成比例定理得出 = ,求出C点坐标,即可求出k的值,再利用A点坐标求出反比例函数解析式;(3)结合图象,利用比较函数大小的方法,取同一值时在上面的就大,即可得出答案.
【考点精析】掌握反比例函数的图象和反比例函数的性质是解答本题的根本,需要知道反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.
科目:初中数学 来源: 题型:
【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)求该班的人数;
(2)请把折线统计图补充完整;
(3)求扇形统计图中,网络文明部分对应的圆心角的度数;
(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是( )
A.40
B.30
C.20
D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为( )
A.1:3
B.1:5
C.1:6
D.1:11
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
①把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
②以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)求 的比值;若DH=6,求EF和半径OA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了相应“足球进校园”的号召,某体育用品商店计划购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的 .
(1)求m的值;
(2)若这两次购进的A,B两种品牌的足球分别按照a元/个, a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com