精英家教网 > 初中数学 > 题目详情

如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任一点,PQ⊥BC于Q,PR⊥BE于R.有下列结论:①△PCQ∽△PER;②数学公式;③数学公式;④数学公式.其中正确的结论的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:①根据两角对应相等的两个三角形相似,即可证出;
②作△DCE的边DC上的高EF,根据三角形的面积公式即可得出△DCE的面积;
③解直角△CEF,即可求出∠DCE的正切值;
④连接BP,利用面积法求解,PQ+PR的值等于C点到BE的距离,即正方形对角线的一半.
解答:解:①∵BE=BC,∴∠QCP=∠REP,又∵∠PQC=∠PRE=90°,∴△PCQ∽△PER,故正确;
②作△DCE的边DC上的高EF.∵BE=BC=1,∴DE=BD-BE=-1,∵△DEF是等腰直角三角形,∴EF=DF=DE=,∴S△DCE=CD•EF=,故正确;
③在△CEF中,∠EFC=90°,EF=,CF=CD-DF=1-=,∴tan∠DCE==-1,故正确;
④连接BP,过C作CM⊥BD于M.∵BC=BE,∴S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×,∴PQ+PR=CM,
∵BE=BC=1且正方形对角线BD=,又BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,
∴CM=BD=,∴PQ+PR=,故正确.
故选D.
点评:本题考查了正方形的性质,三角函数的定义,解直角三角形,相似三角形的判定与性质,综合性较强,有一定难度.解题关键是作出正确的辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如精英家教网下一个正确结论(或结果):
甲:△AEF的边AE=
 
cm,EF=
 
cm;
乙:△FDM的周长为16cm;
丙:EG=BF.
你的任务:
(1)填充甲同学所得结果中的数据;
(2)写出在乙同学所得结果的求解过程;
(3)当点F在AD边上除点A、D外的任何一处(如图2)时:
①试问乙同学的结果是否发生变化?请证明你的结论;
②丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2008年北京市通州区初三模拟检测试卷及答案、数学试卷 题型:044

如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A→B→C→D匀速运动,直线MP扫过正方形所形成的面积为y,点P运动的路程为x,请解答下列问题:

(1)当x=1时,求y的值;

(2)就下列各种情况,求y与x之间的函数关系式;

①0≤x≤4;②4<x≤8;③8<x≤12;

(3)在给出的直角坐标系中,画出(2)中函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
【小题1】填充甲同学所得结果中的数据;
【小题2】 写出在乙同学所得结果的求解过程;
【小题3】当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2012年江西省中等学校招生统一考试数学卷(一) 题型:解答题

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
【小题1】填充甲同学所得结果中的数据;
【小题2】 写出在乙同学所得结果的求解过程;
【小题3】当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=______cm,EF=______cm;
乙:△FDM的周长为16cm;
丙:EG=BF.
你的任务:
(1)填充甲同学所得结果中的数据;
(2)写出在乙同学所得结果的求解过程;
(3)当点F在AD边上除点A、D外的任何一处(如图2)时:
①试问乙同学的结果是否发生变化?请证明你的结论;
②丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

同步练习册答案