分析 先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′等于旋转角,然后利用等腰三角形的性质和三角形内角和定理计算出∠CAC′的度数即可.
解答 解:∵CC′∥AB,
∴∠ACC′=∠CAB=70°,
∵将△ABC在平面内绕点A旋转到△AB′C′的位置,
∴AC=AC′,∠CAC′等于旋转角,
∴∠AC′C=∠ACC′=70°,
∴∠CAC′=180°-70°-70°=40°,
∴旋转角的度数为40°.
故答案为40°.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形两底角相等的性质,平行线的性质以及三角形内角和定理,熟记性质并准确识图是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com