精英家教网 > 初中数学 > 题目详情

问题探究:

(1)如图所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图中的矩形则蚂蚁爬行的最短路程即为线段的长)

(2)如图所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程.

(3)如图所示,在(2)的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.

答案:
分析:(1)蚂蚁爬行的最短路程为矩形的对角线的长度,由勾股定理可求得.
          (2)蚂蚁爬行的最短路程为圆锥展开图中的AA′的连线,可求得△PAA′是等边三角形,则AA′=PA=4.
          (3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离.
解答:精英家教网解:(1)∵BB′=2π×
3
=3,
AB′=
AB2+BB2
=
42+32
=5.
即蚂蚁爬行的最短路程为5.(4分)

(2)连接AA′,则AA′的长为蚂蚁爬行的最短路程,
设r1为圆锥底面半径,r2为侧面展开图(扇形)的半径,
r1=
2
3
r2=4

由题意得:r1=
r2
180
,即2×π×
2
3
=
n
180
×π×4

∴n=60,
∴△PAA′是等边三角形,
∴最短路程为AA′=PA=4.
(3)如图③所示是圆锥的侧面展开图,
过A作AC⊥PA′于点C,
则线段AC的长就是蚂蚁爬行的最短路程.
∴AC=PA?sin∠APA'=4×sin60°=4×
3
2
=2
3

∴蚂蚁爬行的最短距离为2
3
点评:本题利用了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质求解.
                                               
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

问题探究:
(1)如图①所示是一个半径为
3
,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为
2
3
,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衢州)【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题探究:
(1)如图1,在⊙O中,AB是直径,CD⊥AB于点E,AE=a,EB=b.计算CE的长度(用a、b的代数式表示).
(2)如图2,请你在边长分别为a、b(a>b)的矩形ABCD的边AD上找一点M,使得线段CM=
ab
(保留作图痕迹).
问题解决:
(3)请你在(2)中结论的基础上,在图3中对矩形ABCD进行拆分并拼接为一个与其面积相等的正方形.并探究你所画出拼成的正方形的面积是否存在最大值和最小值?若存在,求出这个最大值和最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题探究
(1)如图1,△ABC是钝角三角形,∠C>90°请在图1中,将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.
(2)如图2,△ABC是直角三角形,∠C=90°,AC=12,BC=5.请在图2中,将△ABC补成矩形,使得△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,画出所有符合条件的矩形,并求此矩形的面积.
问题解决
(3)李大爷现有一个锐角三角形ABC(AB>AC>BC)形的鱼塘(如图3),鱼塘三个角的顶点A、B、C上各有一棵大树.现在李大爷想把原来的鱼塘扩建成一个矩形鱼塘(原鱼塘周围的面积足够大),并还想:三棵大树A、B、C中的两个为矩形鱼塘一边的两个端点,第三棵树落在鱼塘这一边的对边上.请你在图3中,画出所有符合条件的矩形鱼塘的示意图,并指出哪一个的周长最小?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是
AD或A′D
AD或A′D
,∠CAC′=
90
90
°.

问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案