精英家教网 > 初中数学 > 题目详情
18.计算:
(1)$\sqrt{27}$-$\sqrt{12}$+$\sqrt{3}$
(2)$\frac{\sqrt{12}}{\sqrt{3}}$
(3)($\sqrt{8}$+5$\sqrt{6}$)×$\sqrt{2}$.

分析 (1)直接化简二次根式进而合并求出答案;
(2)直接利用二次根式乘除运算法则化简进而求出答案;
(3)直接利用二次根式乘法运算法则计算得出答案.

解答 解:(1)$\sqrt{27}$-$\sqrt{12}$+$\sqrt{3}$
=3$\sqrt{3}$-2$\sqrt{3}$+$\sqrt{3}$
=2$\sqrt{3}$;

(2)$\frac{\sqrt{12}}{\sqrt{3}}$=$\frac{2\sqrt{3}}{\sqrt{3}}$=2;

(3)($\sqrt{8}$+5$\sqrt{6}$)×$\sqrt{2}$
=$\sqrt{16}$+5×$\sqrt{12}$
=4+10$\sqrt{3}$.

点评 此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.二次函数y=2x2-4x-4的顶点坐标是(1,-6).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,点B是线段AC的中点,以线段BC为边作矩形BCDE,点P是线段AC上一动点,连接DP,过点D作DP的垂线,交射线BE于点F,点P从点A出发,沿AC方向运动,当点P和点C重合时运动停止,设线段AP的长为x,△PBF的面积为S,S关于x的函数图象如图2所示(其中0≤x≤2,2<x≤m时,函数的解析式不同).
(1)填空:CD的长度为3;
(2)求S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若a>b,则下列式子正确的是(  )
A.a-2>b-2B.$\frac{1}{2}$a<$\frac{1}{2}$bC.4+3a<4+3bD.-2a>-2b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.
(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(2)若∠ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:(2-$\sqrt{5}$)2-(1+$\sqrt{5}$)($\sqrt{5}$-2)+$\sqrt{45}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知如图,直线y1=k1x+b与双曲线y2=$\frac{{k}_{2}}{x}$的图象相交于A(2,-3)、B(-3,m)两点.
(1)求直线和双曲线的解析式.
(2)连接OA、OB,已知点P在x轴上,且S△PBO=2S△ABO,求点P的坐标.
(3)直线AB与x轴交于点C,在y轴上是否存在一点D,使△BCD的周长最小?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,Rt△ABC中,∠B=90°,BC=5$\sqrt{3}$,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A运动.同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B运动.当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F.联结
DE、EF.
(1)求证:四边形AEFD是平行四边形;
(2)当t=$\frac{10}{3}$时,四边形AEFD是菱形;
(3)当t为何值时,EF平分△ABC的面积?
(4)当t为何值时,△DEF与△ABC相似?
(5)当t=$\frac{5}{2}$时,四个三角形△CDF、△ADE、△DEF、△ABC都相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(2,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)在y轴上是否存在一点M,使△MAB的面积和平行四边形ABDC的面积相等?若存在,求出点M的坐标;若不存在,请说明理由.
(2)若点P在线段BD上运动(不与B,D重合),连接PC,PO,试探究△CDP与△BOP的面积和的取值范围;
(3)若点P在第一、四象限,且在直线BD上运动,请直接写出∠CPO,∠DCP,∠BOP的数量关系.

查看答案和解析>>

同步练习册答案