精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的边长为2,E是BC的中点,F是对角线BD上的一个动点(点F不与B、D重合).设EF+FC的长为x,则x的取值范围是
 
考点:轴对称-最短路线问题,正方形的性质
专题:
分析:求得EF+FC的最大值和最小值即可求得取值范围.
解答:解:当A,F,E在一条直线时,x取得最小值,
此时连接AE交BD于F,有EF+FC=AE=
5

当F于D重合时,x取得最大值,
此时EF+FC=CD+DE=2+
5

因为点F不与B、D重合,
所以x的取值范围是
5
≤x<2+
5
点评:本题考查了正方形的性质,轴对称-最短路线问题,求得最小值和最大值是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=2
3
,则AC的长为(  )
A、
3
B、2
2
C、3
D、
3
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

将数轴上表示-5的点,先向右移动两个单位长度,再向左移动三个单位长度后对应的点表示的数是(  )
A、-1B、-4C、4D、-6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,-2),则以A,B,C为顶点的三角形外接圆的圆心坐标是(  )
A、(2,3)
B、(3,2)
C、(3,1)
D、(1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,已知点A的坐标为(-4,2),请解答下列问题;
(1)画出△ABC绕坐标原点O旋转180°后得到△A1B1C1,并写出点A1的坐标;
(2)求点A旋转到点A1所经过的路线的长;
(3)若点P(a,b)是△ABC内的任意一点,点P1按(1)中要求得到的对应点,试写出点P1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列命题中正确的个数是(  )
①不是边长相等的多边形各角不相等;
②正n边形的对称轴有n条;
③正多边形至少旋转它的中心角的度数就能与本身重合;
④正多边形一定是旋转对称图形.
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知下列锐角三角函数值,用计算器求锐角A,B的度数.
(1)sinA=0.7,sinB=0.01;
(2)cosA=0.15,cosB=0.8;
(3)tanA=2.4,tanB=0.5.

查看答案和解析>>

科目:初中数学 来源: 题型:

a是不为1的有理数,我们把
1
1-a
称为a的差倒数,如:2的差倒数是
1
1-2
=-1.已知a1=-
1
3
,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…依此类推,那么a2015=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、E在△ABC的边BC上,BE=DC,AD=AE,求证:AB=AC.

查看答案和解析>>

同步练习册答案