A. | 16 | B. | 8 | C. | 4 | D. | 2 |
分析 由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.
解答 解:∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD=2,
∴OA=OB=OC=OD=1,
∵CE∥BD,DE∥AC,
∴四边形DECO为平行四边形,
∵OD=OC,
∴四边形DECO为菱形,
∴OD=DE=EC=OC=1,
则四边形OCED的周长为1+1+1+1=4,
故选C.
点评 此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握菱形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:选择题
数据x | 70≤x≤79 | 80≤x≤89 | 90≤x≤99 |
个数 | 800 | 1300 | 900 |
平均数 | 78 | 85 | 92 |
A. | 92 | B. | 85 | C. | 83 | D. | 78 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a0=0 | B. | ${a^{-2}}=-\frac{1}{a^2}$ | C. | (-a)4=-a4 | D. | a-2÷a-3=a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 28 | B. | 25 | C. | 22 | D. | 21 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | $\sqrt{8}$-$\sqrt{2}$=$\sqrt{2}$ | C. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | D. | $\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com