如图11-①,为的直径,与相切于点与相切于点,点为延长线上一点,且
(1)求证:为的切线;
(2)连接,的延长线与的延长线交于点(如图11-②所示).若,求线段和的长.
科目:初中数学 来源: 题型:
分数 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
人数 | 5 | 10 | 20 | 11 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
1 |
2 |
2 |
2 |
3 |
3 |
3 |
5 |
2-2
|
2-2
|
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:044
我们知道:由于圆是中心对称图形有,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1)。
探索下列问题:
(
1)在图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意直线),将每个正方形都分割成面积相等的两部分;(2
)一条竖直方向的直线m以及任意直线n,在由左向右平移的过程中,将六边形分成左右两部分,其面积分别记为S1和S2。① 你在图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用摚紨,摚綌,摚緮连接);
② 请你在图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用摚紨,摚綌,摚緮连接)。
(3
)是否存在一条直线,将一个任意平面图形(如图11-5)分割成面积相等的两部分?请简略说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,DEF=∠CBA,AH∶AC=2∶3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图12).
探究1:在运动中,四边形CDH′H能否为正方形?若能, 请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com