如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P是上的一个动点,连结OP,并延长OP交线段BC于点K,过点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G. 若,则BK﹦ .
,.
【解析】
试题分析:根据MG与⊙O相切得OK⊥MG.设直线OK交AB的延长线于点H,易证∠MGB=∠BHK.根据三角函数定义,tan∠MGB=tan∠BHK= ,从而有AH=3,BH=3BK.因为AB=2,所以BH=1,可求BK.
P为动点,当P接近F点时,本题另有一个解.
试题解析::(1)若OP的延长线与射线AB的延长线相交,设交点为H.如图1,
∵MG与⊙O相切,
∴OK⊥MG.
∵∠BKH=∠PKG,
∴∠MGB=∠BHK.
∵,
∴tan∠BHK=.
∴AH=3AO=3×1=3,BH=3BK.
∵AB=2,
∴BH=1,
∴BK=.
(2)若OP的延长线与射线DC的延长线相交,设交点为H.如图2,
同理可求得BK=.
综上所述,本题应填,.
考点: 切线的性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:同步题 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com