精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.

(1)判断△BMN的形状,并证明你的结论;

(2)判断△MFN与△BDC之间的关系,并说明理由.


    (1)答:△BMN是等腰直角三角形.

证明:∵AB=AC,点M是BC的中点,

∴AM⊥BC,AM平分∠BAC.

∵BN平分∠ABE,AC⊥BD,

∴∠AEB=90°,

∴∠EAB+∠EBA=90°,

∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.

∴△BMN是等腰直角三角形;

(2)答:△MFN∽△BDC.

证明:∵点F,M分别是AB,BC的中点,

∴FM∥AC,FM=AC.

∵AC=BD,

∴FM=BD,即

∵△BMN是等腰直角三角形,

∴NM=BM=BC,即

∵AM⊥BC,

∴∠NMF+∠FMB=90°.

∵FM∥AC,

∴∠ACB=∠FMB.

∵∠CEB=90°,

∴∠ACB+∠CBD=90°.

∴∠CBD+∠FMB=90°,

∴∠NMF=∠CBD.

∴△MFN∽△BDC.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为(  )

 

A.

115°

B.

125°

C.

155°

D.

165°

查看答案和解析>>

科目:初中数学 来源: 题型:


第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,,2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.

(1)请你直接写出按照爸爸的规则小明能看比赛的概率;

(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为(  )

   A.             4  B.             2                C. 5    D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,桌面上有一个一次性纸杯,它的正视图应是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是(  )

 

A.

x1=﹣6,x2=﹣1

B.

x1=0,x2=5

C.

x1=﹣3,x2=5

D.

x1=﹣6,x2=2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.

(1)求抛物线的解析式;

(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;

(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列命题中:(1)过一点有且只有一条直线垂直于已知直线;(2)经过一点有且只有一条直线和已知直线平行;(3)过线段AB外一点P作线段AB的中垂线;(4)如果直线l1l2相交,直线l2l3相交,那么l1l2;(5)如果两条直线都与同一条直线垂直,那么这两条直线平行;(6)两条直线没有公共点,那么这条直线一定平行;(7)两条直线与第三条直线相交,如果内错角相等,则同旁内角互补;其中正确的命题个数为 (      ) 

  A.2个    B.3个     C.4个    D.5个

查看答案和解析>>

同步练习册答案