精英家教网 > 初中数学 > 题目详情

如图在△ABC中,BC=8,AC=6,AB=10,它们的中点分别是点D、E、F,则CF的长为________.

5
分析:利用勾股定理的逆定理可以推知∠ACB=90°;然后利用三角形中位线定理可以求得平行四边形CEFD是矩形、EF与CE的长度;最后在直角三角形DFC中利用勾股定理求得CF的长度.
解答:解:∵在△ABC中,BC=8,AC=6,AB=10,
∴AB2=AC2+BC2
∴∠ACB=90°;
又∵点D、E、F分别是BC、AC、AB的中点,
∴EF∥BC,且EF=BC=4,
FD∥AC,且FD=AC=3,
∴四边形CEFD是矩形,
∴EF=CD,
∴CF==5;
故答案是:5.
点评:本题综合考查了矩形的判定与性质、勾股定理的逆定理、三角形中位线定理.解答该题的突破口是根据已知条件“在△ABC中,BC=8,AC=6,AB=10”利用勾股定理的逆定理推知△ABC是直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD是边AB上的高.那么图中与∠A相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,则∠BOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的两点,则图中阴影部分的面积是
20
20

查看答案和解析>>

同步练习册答案