精英家教网 > 初中数学 > 题目详情

式方程的根的情况是

[  ]

A.x=1是原方程的根,x=-1是增根

B.x=-1是原方程的根,x=3是增根

C.x=3是原方程的根,x=-1是增根

D.x=1是增根,原方程无解

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

科目:初中数学 来源:2012届北京市西城区九年级一模数学卷(解析版) 题型:解答题

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

同步练习册答案