精英家教网 > 初中数学 > 题目详情
如图所示,△ABC为直角三角形,∠ACB=90°,BF平分∠ABC,CD⊥AB于D,CD交BF于点G,GE∥CA,求证:CE与FG互相垂直平分.
分析:过G作GK⊥BC于K,由角平分线的性质可得∠GBK=∠GBD,GK=GD,由全等三角形的判定定理可知△GBK≌△GBD,△CGB≌△EGB,由平行四边形的判定定理可知FCGE为平行四边形,根据CG=GE即平行四边形的邻边相等可知此四边形是菱形,由菱形的对角线互相垂直平分即可求解.
解答:解:过G作GK⊥BC于K,
∵BF平分∠ABC,
∴∠GBK=∠GBD,GK=GD,
∵∠GKB=∠GDB
∴△GBK≌△GBD(AAS),
∴DB=BK,∠EKB=∠BDC=90°,∠EBK=∠EBK,
∴△CGB≌△EGB(ASA),
∴CG=EG,即GF垂直平分CE(三合一).
∵∠FCE=∠CEK=∠ECD,
∴△CFE≌△CGE(ASA),
∴FC=CG=GE,FC∥EG.
∴FCGE为平行四边形,
∵CG=GE,
∴四边形FCGE为菱形,
∴CE与GF互相垂直平分.
点评:本题考查的是角平分线的性质、全等三角形的判定与性质、平行四边形及菱形的判定与性质,涉及面较广,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,△ABC为等边三角形,D、E分别是CB、BC延长线上的点,连接AD、AE,且∠D精英家教网AE=120°,试问:
(1)△ADB与△EDA能相似吗?
(2)△ADB与△EAC能相似吗?
(3)BC2=BD•CE能成立吗?请说明以上各问的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有(  )
A、
1
2
m
n
3
5
B、
2
3
m
n
3
4
C、80%<
m
n
<83%
D、78%<
m
n
<79%

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题.观察计算
当a=5,b=3时,
a+b
2
ab
的大小关系是

当a=4,b=4时,
a+b
2
ab
的大小关系是
=
=

●探究证明
如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.
(1)分别用a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
●归纳结论
根据上面的观察计算、探究证明,你能得出
a+b
2
ab
的大小关系是:
a+b
2
ab
(当a=b时,取“=”)
a+b
2
ab
(当a=b时,取“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示的△ABC为等边三角形,边长为2,D为BC中点,△ADC绕点A顺时针旋转60°得到△AEB,则BE=
1
1

查看答案和解析>>

同步练习册答案