精英家教网 > 初中数学 > 题目详情
19.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是(  )
A.5B.6C.7D.8

分析 先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.

解答 解:连接CF,

∵等边△ABC中,AD是BC边上的中线
∴AD是BC边上的高线,即AD垂直平分BC
∴EB=EC,
当B、F、E三点共线时,EF+EC=EF+BE=CF,
∵等边△ABC中,F是AB边的中点,
∴AD=CF=6,
∴EF+BE的最小值为6,
故选B

点评 本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为-2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.
(1)当t=0秒时,AC的长为2,当t=2秒时,AC的长为4.
(2)用含有t的代数式表示AC的长为t+2.
(3)当t=6秒时AC-BD=5,当t=11秒时AC+BD=15.
(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,在矩形ABCD和矩形CEFG中,已知$\frac{AD}{AB}$=$\frac{CG}{CE}$=k,现将图1中的矩形CEFG绕点C顺时针旋转一个角度,连结DE与AF,得到图2.

(1)如图2,当k=$\frac{1}{2}$时?求$\frac{AC}{AB}$的值;?求$\frac{AF}{DE}$的值.
(2)如图2,请直接写出$\frac{AF}{DE}$的值.(用含k的代数式表示)
(3)如图3,设DC与AF交于点H,DE与AF交于点P,连结CP,问CP与AF具有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.用配方法解一元二次方程x2-6x=3时,方程的两边同时加上9,使得方程左边配成一个完全平方式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AD是等边三角形ABC的中线,E是AC上的一点,且AE=AD,求∠EDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.化简:$\frac{1}{\sqrt{5}}$(要求分母不带根号)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.计算:(-4)×6=-24.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△EDF:S△BFC:S△BCD等于1:4:6.

查看答案和解析>>

同步练习册答案