精英家教网 > 初中数学 > 题目详情
10.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A (11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(1)如图①,当∠BOP=30°时,求点P的坐标;
(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);
(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).

分析 (1)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;
(2)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;
(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值,得出P点坐标.

解答 解:(1)根据题意,∠OBP=90°,OB=6,
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2
即(2t)2=62+t2
解得:t1=2$\sqrt{3}$,t2=-2$\sqrt{3}$(舍去).
∴点P的坐标为(2$\sqrt{3}$,6);

(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP,
∴∠OPB′=∠OPB,∠QPC′=∠QPC,
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,
∴∠OPB+∠QPC=90°,
∵∠BOP+∠OPB=90°,
∴∠BOP=∠CPQ,
又∵∠OBP=∠C=90°,
∴△OBP∽△PCQ,
∴$\frac{OB}{PC}$=$\frac{BP}{CQ}$,
由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11-t,CQ=6-m.
∴$\frac{6}{11-t}$=$\frac{t}{6-m}$,
∴m=$\frac{1}{6}$t2-$\frac{11}{6}$t+6(0<t<11);

(3)过点P作PE⊥OA于E,如图3,
∴∠PEA=∠QAC′=90°,
∴∠PC′E+∠EPC′=90°,
∵∠PC′E+∠QC′A=90°,
∴∠EPC′=∠QC′A,
∴△PC′E∽△C′QA,
∴$\frac{PE}{AC′}$=$\frac{C′E}{AQ}$,
在△PC′E和△OC′B′中,
$\left\{\begin{array}{l}{∠PEC′=∠OB′C}\\{∠PC′E=∠OC′B′}\\{PE=OB′}\end{array}\right.$,
∴△PC′E≌△OC′B′(AAS),
∴PC'=OC'=PC,
∴BP=AC',
∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11-2t,
∴$\frac{6}{t}$=$\frac{11-2t}{m}$,
∵m=$\frac{1}{6}$t2-$\frac{11}{6}$t+6,
∴3t2-22t+36=0,
解得:t1=$\frac{11-\sqrt{13}}{3}$,t2=$\frac{11+\sqrt{13}}{3}$
故点P的坐标为( $\frac{11-\sqrt{3}}{3}$,6)或( $\frac{11+\sqrt{13}}{3}$,6).

点评 本题考查了几何变换综合性题目,用到的知识点有:翻折变换的性质、矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、解一元二次方程等有关的知识点,综合性较强,难度较大.清楚翻折前后的两个图形全等以及熟悉相似三角形的判定与性质是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,直线l1∥l2,直线l3与l1、l2分别交于A、B两点,若∠1=70°,则∠2=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.一个多边形的每个内角都等于140°,则这个多边形的边数是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.一元二次方程$\frac{1}{3}$x2-3=0的两个根是x1=3,x2=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于$\frac{1}{2}$BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠A=50°,则∠ACB的度数为(  )
A.105°B.100°C.95°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,抛物线C1:y1=-x2关于直线x=1对称,可得到抛物线C2.且C1和C2交于点P,顶点分别是点O和点Q.
(1)求抛物线C2的表达式;
(2)定义:像C1和C2两条抛物线,将其中一条只通过直线x=m对称得另一条,且∠OPQ=90°,这样的抛物线称为和谐线,那么抛物线C1和C2是和谐线吗?请说明理由; 
(3)在(2)的定义条件下,求抛物线y=x2-2x-3的和谐线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB是⊙O的直径,C,D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD,CB.若AD=CD=a,写出求四边形ABCD面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,已知直线l1:y=mx(m≠0)与直线l2:y=ax+b(a≠0)相交于点A(1,2),直线l2与x轴交于点B(3,0).
(1)分别求直线l1和l2的表达式;
(2)过动点P(0,n)且平行于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D左方时,写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源:2017届江苏省九年级下学期第一次学情调研数学试卷(解析版) 题型:单选题

不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是

A. 摸出的是3个白球 B. 摸出的是3个黑球

C. 摸出的是2个白球、1个黑球 D. 摸出的是2个黑球、1个白球

查看答案和解析>>

同步练习册答案